Mitigation Plan for Stream Mitigation of Silver Creek and Unnamed Tributary

Silver Creek and Unnamed Tributary Burke County, NC SCO # D05016-1

Prepared for: NCDENR – EEP

2728 Capital Blvd, Suite 1H 103 Raleigh NC 27604

Submitted: September 11, 2007

Prepared by:

Wetlands Resource Center

3970 Bowen Road Canal Winchester, Ohio 43110 Project Manager: Cal Miller P: (614) 864-7511 F: (614) 866-3691

And

EMH&T, Inc.

5500 New Albany Road Columbus, Ohio 43054 Project Manager: Miles F. Hebert, P.E. P: (614) 775-4205 F: (614) 775-4802 Main: (614) 775-4500

TABLE OF CONTENTS

Exec	cutive Summary	i
1.0	Project Background	
	1.1 Project Site Location and Details	
	1.2 Pre-restoration Existing Conditions	
2.0	Restoration Summary	
	2.1 Mitigation Goals and Objectives	
	2.2 Restoration Approach	
	2.3 Restoration Summary Table	
3.0	Monitoring Plan	
	3.1 Stream Channel Monitoring	
	3.2 Planted Woody Vegetation Monitoring	
	3.3 Performance Standards	
	3.4 Additional Monitoring for DWQ	
4.0	Maintenance and Contingency Plans	
5.0	References	
6.0	As-Built Plan Sheets	
7.0	Figures Figure 1 – Silver Creek Location Map Figure 2 – Project Stream Reaches Figure 3 – Silver Creek Watershed Map	
<u>Tab</u>	les	
Tabl	le 1 – Summary of Drainage Areas le 2 – Baseline Morphology and Hydrology Data le 3 – Restoration Summary Table	
<u>App</u>	<u>endices</u>	
App App App	endix A – Silver Creek Mainstem and UT-A As-Built Photographic Doc endix B – Brindle Creek Reference Reach Summary Data endix C – As-Built Long-Term Monitoring Profiles endix D – As-Built Long-Term Monitoring Cross-Section Summary Ter- endix E – Supporting Documentation	

EXECUTIVE SUMMARY

As discussed in the Restoration Plan for Silver Creek and the associated Unnamed Tributary, the mitigation goals and objectives for the project streams were met by restoring physical and biological functions of the project streams beyond pre-existing conditions. Pre-restoration conditions consisted of impaired, channelized, eroding and entrenched stream channels. The mitigation goals and objectives were met by providing:

- Stable stream channels with features indicative of a biologically diverse environment;
- restored connections between the bankfull width and floodprone width of the channels by restoring the floodprone area;
- improved physical and aquatic habitat features;
- minimization of development and existing land use impacts to the stream; and
- long-term protection of the stream corridors.

Restoration of the streams has provided the desired habitat and stability features required to improve the quality of the stream for the long-term, such as:

- Reversing the effects of channelization;
- stabilizing eroding streambanks;
- creating instream habitat features;
- re-vegetating the riparian corridors with native trees and shrubs and preservation of existing corridors, where present; and
- restoring floodprone areas along the mainstem and unnamed tributary, thereby providing streambank and channel stability and sediment and nutrient storage.

The restoration techniques implemented on Silver Creek Mainstem and UT-A provide attributes described above using a variety of restoration practices recognized to improve stability and biological function. Restoration of the project streams re-established geomorphologic features consistent with natural stream channel characteristics. Results achieved are listed below:

- Stream channels with stable geometries to convey bankfull flows and entrain bedload and suspended sediment readily available to the streams;
- stable channel pattern based on reference reach conditions;
- in-stream channel stabilization structures, including cross vanes, step-pools, J-hook vanes, rock vanes, constructed riffles, jetties and boulder clusters that enhance aquatic habitat;
- extensive indigenous herbaceous, shrub, mid-story and canopy riparian plantings.

To demonstrate the success of the project, three forms of monitoring will be performed: (1) photo documentation; (2) ecological function assessment; and (3) channel stability measurements. Demonstration of long-term success of channel features will be tested in terms of a minimum exposure to two (2) bankfull events occurring in separate monitoring years. The monitoring shall be performed each year for the 5-year monitoring period. Long-term success criteria will be evaluated by monitoring and documenting the following:

- Channel aggradation or degradation
- streambank erosion;
- success of riparian vegetation;

- presence of instream bar deposits;
- health and survival of indigenous, non-invasive vegetation (80% survival of planted species after 5 years); and
- changes in as-built channel pattern, profile and dimension (should be minimal in comparison to as-built conditions, noting minor changes may represent increases in stability). Maintenance of floodplain connectivity, with respect to dimension, is a key success criteria.

The following table summarizes pre-existing and post-construction stream lengths, type of restoration and identification of the reaches restored as presented throughout this Mitigation Plan. The original Restoration Plan includes mitigation specific to the Silver Creek mainstem and a single unnamed tributary. As project construction progressed, it became apparent three additional unnamed tributaries were beneficially improved and protected by the restoration project. In each case the tributaries were enhanced geomorphologically and by the establishment of a riparian corridor. Geomorphologic enhancements include streambank stabilization and realignments of the channels to improve their confluences with the mainstem channel. For these reasons, the tributary channels have been included in this mitigation plan and preserved along their lengths within the established EEP Conservation Easement recorded for the Silver Creek mainstem. As a result of this change, the unnamed tributary included in the Restoration Plan is designated UT-A, and the three unnamed tributaries along the restored mainstem reach are designated UT-B, UT-C and UT-D. The tributary reach ID's used in this table are shown on the As-Built Plan Sheets in **Section 6.0** and on **Figure 2**.

Pre-Existing Conditions/Post-Construction Summary Project Number DD05016-1 (Silver Creek Restoration)											
Tributary Reach ID	Pre-existing length	Restored Length	Restoration Level	Credit Ratio*	SMUs						
Silver Creek Mainstem	3,040 ft	2,905 ft	Priority Level II Restoration	1.0	2,905						
Unnamed Tributary A (UT-A)	1,508 ft	1,552 ft	Priority Level II Restoration	1.0	1,552						
Unnamed Tributary B (UT-B)	66 ft	66 ft	Preservation	5.0	13						
Unnamed Tributary C (UT-C)	48 ft	48 ft	Preservation	5.0	10						
Unnamed Tributary D (UT-D)	52 ft	52 ft	Preservation	5.0	10						
Totals	4,714 ft	4,623 ft			4,490						

*Feet of Stream/SMU credit.

The long-term monitoring of the constructed project includes ten monumented cross-sections, 3,000 linear feet of longitudinal profiles, pebble counts at each monumented cross-section, and ten monitoring plots for shrub, mid-story and canopy plantings representative of outside meanders, the 30-foot wide riparian buffer, streamside shrubs and floodplain zones. Two galvanized steel, USGS Type A, 4-foot crest gages have been installed on each restored reach; one at the bottom of the restored Silver Creek mainstem reach, and the other near the bottom of the UT-A restored reach as shown on the As-Built plans in **Section 6.0** to document bankfull and greater flows. Stream monitoring will be in accordance with the multi-agency, North Carolina Stream Mitigation

Mitigation Plan – Silver Creek Restoration

Guidelines (April 2003) applicable to Priority Level 2 Restoration projects following the template for *Content, Format and Data Requirements for EEP Monitoring Reports, Version 1.2* (11/16/06). Vegetation monitoring will be conducted in accordance with *CVS-EEP Protocol for Recording Vegetation, Version 4.0* (Lee, M.T., Peet, RK., Roberts, S.R., Wentworth, T.R. 2006) for Levels 1 and 2 Plot Sampling. Throughout the monitoring period, remedial action will be performed based on agency review of monitoring documents, and decision making between EEP and the provider to ensure the long-term success of the Silver Creek mitigation project.

1.0 PROJECT BACKGROUND

1.1 Project Site Location and Details

The project is located approximately 3,000 feet east of Dysartsville Road and approximately 2,500 feet south of Patton Road, west of the City of Morganton, in Burke County, North Carolina as shown on **Figures 1 and 2**. To locate the project site, exit I-40 at Exit 94 and travel south along Dysartsville Road and turn left (east) onto Seven Springs Lane. The project spans properties owned separately by Mr. and Mrs. Frank Queen and Mr. and Mrs. Richard Conway (Seven Springs Farms, Inc.).

The Silver Creek watershed is located in the Catawba River Basin. The project stream reaches are mapped on North Carolina Department of Transportation, Light Detection and Ranging (LiDAR) coverage and are located within USGS Catalog Unit Number 03050101 and Local Watershed 14-digit basin 03050101050050, as shown on **Figure 2**. The project includes a reach on Silver Creek mainstem and four unnamed tributary streams designated UT-A, UT-B, UT-C and UT-D. The restoration project on Silver Creek is located in a wide, Rosgen Valley Type VIII, approximately 8.25 miles upstream from the confluence of Silver Creek with the Catawba River.

The Silver Creek watershed is located in the Eastern Blue Ridge Foothills on the boundary between the Southern Inner Piedmont and Blue Ridge Mountains Physiographic Provinces of Western North Carolina. Soils are developed over fault-emplaced metamorphic and intrusive igneous rocks associated with the Smith River Allochthon and Sauratown Mountains Anticlinorium, uplifted and displaced during tectonic continental plate collision during the Alleghenian Orogeny about 356 million years (my) ago (Fullager and Odom, 1973).

Metamorphic rocks that outcrop within the Silver Creek watershed include biotite gneiss and schist, amphibolite, megacrystic biotite gneiss, and inequigranular biotite gneiss. The plutonic igneous rock formation that underlies the stream restoration project along the mainstem and the majority of UT-A is a migmatic granite gneiss (foliated to massive, granitic to quartz dioritic, biotite gneiss and amphibolite common). The spring that defines the top of UT-A emerges from an outcropping of metamorphosed plutonic granitic rock, radioactive dated to approximately 455-540 my. The exposed rock is equigranular to megacrystic, foliated to massive and includes the Toluca Granite (Fullager and Odom, 1973).

The soils along the mainstem of Silver Creek that have been derived from and developed over these metamorphic and plutonic igneous rock formations include the Colvard Series consisting of loamy sediments ranging from 40 to 60 inches or more in thickness over deposits of sandy, loamy gravelly to cobbly sediments. Rock fragments range from 0 to 15 percent to a depth of 40 inches, and from 0 to 80 percent below 40 inches. Flakes of mica range from a few to common (USDA NRCS, January 3, 2006).

Along UT-A the Rhodhiss Series is present and is residuum from the underlying felsic crystalline bedrock. The Rhodhiss sandy to sandy-clay loam is found on 25 to 40 percent hillside slopes with a depth to bedrock greater than 60 inches. The depth to the top of the argillaceous (clayey) horizon ranges from 2 to 20 inches. The depth to the base of the argillaceous horizon is 20 to 60 inches or more. The pedon contains 0 to 20 percent mica flakes throughout, with mica content ranging up to 35 percent below a depth of 40 inches when the C horizon is present. Soils mapping and taxonomic descriptions are from the NRCS Soil Survey of Burke County, North Carolina (USDA NRCS, January 3, 2006), and were provided by the Burke County Soil & Water Conservation District.

The drainage area tributary to the downstream limits of the project on the mainstem of Silver Creek is 8.26 square miles or 5,287 acres. UT-A has a contribution drainage area of 0.08 square miles or 48 acres. Although portions of UT-B, UT-C and UT-D are being preserved as a part of this Mitigation Plan, individual drainage areas for these first order tributaries have neither been delineated nor determined. Sub-watershed drainage areas for Silver Creek Mainstem and UT-A are shown on **Figure 3** and summarized in **Table 1**. Within the watershed boundaries of the project, land use is predominantly agricultural, including row crop production and pasture/hay land with wooded and cleared hillsides. Land use in the vicinity of the project is not expected to change in the foreseeable future.

TABLE 1 Drainage Areas Project Number D05016-1 (Silver Creek and Unnamed Tributary)							
Reach	Drainage Area (Acres)						
Silver Creek Mainstem UT-A to Silver Creek*	5,287 48						
Total	5,287						

*UT-A drainage area is included in the total drainage area for the Silver Creek Mainstem (See Figure 3).

1.2 Pre-Restoration Existing Conditions

Pre-restoration land use surrounding the project streams included active cattle pasture land along the Silver Creek mainstem. The pre-existing riparian corridor along Silver Creek, including UT-B, UT-C and UT-D, varied from wide to denuded within the project area. The wide portion consisted of a mature forested corridor, while narrow and denuded areas were the result of a recent pine beetle infestation. Active pasture is located to the east and west of UT-A. A sparsely wooded corridor is present along the reach and has been maintained. Typical species observed along the streams and adjacent forested areas include *Pinus taeda* (loblolly pine), *Platanus occidentalis* (sycamore) and *Ilex opaca* (American holly). Specific information regarding the pre-restoration condition of Silver Creek and UT-A is given in the following sections. No specific pre-restoration data was collected for UT-B, UT-C and UT-D.

Silver Creek Mainstem

Prior to restoration, agricultural land use and channel incision had altered the Silver Creek channel throughout the project reach, resulting in an unstable Rosgen F4 stream type. The incised nature of the channel was attributed to channelization and cattle intrusion, which resulted in vegetative denuding and bank destabilization due to hoof shear. The stable, natural channel form for Silver Creek mainstem was determined to be a Rosgen C4 stream type, based on detailed, quantitative analysis of a stable reference reach located approximately 2.4 miles upstream from the top of the mainstem altered reach in the Silver Creek watershed.

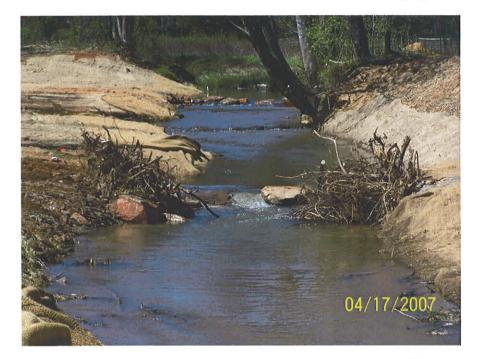
The Silver Creek channel's unstable width to depth ratio (5.36 - 65.14), entrenchment ratio (0.69 - 1.91), relatively flat average profile slope (0.0026 ft/ft) and poorly defined active streambed resulted in a deeply incised channel disconnected from its floodplain. Mid-channel, lateral, and transverse sand and gravel bar deposits were observed at locations throughout the entire reach, demonstrating the stream lacked stable pattern, profile and dimension to entrain its bedload. The locations of these depositional features in the near bank region deflected flows from the center of the channel toward

the incised vertical banks, accelerating streambank erosion. Near bank stress at a critical riffle crosssection, located at altered reach profile station 12+52.50, was approximately 2.24 lbs/square foot, based on design calculations. The near vertical, denuded 8-feet streambanks at this location were typical of the pre-existing impaired stream reach within the mainstem project corridor. Utilizing the near bank stress method algorithm in RiverMorph[®] v.4.0, it was estimated that approximately 5,570 cubic yards per year (or 6,980 tons per year) of sediment was being eroded from the unstable streambanks along the mainstem impaired reach into the Silver Creek watershed.

UT-A to Silver Creek

The UT-A channel was a classic Type I valley confined, A1-A2 stream type transitioning to a Type II colluvial valley, B4-B5 stream type in the lower third of the altered reach. The upper two-thirds of the reach exhibited some bedrock control, in-stream boulders together with flood placed woody debris from leaning or fallen trees along the unstable, steep to undercut streambanks. The impaired riparian vegetative communities were exacerbating streambank erosion rates and down-slope movement of colluvium. Cattle intrusion had adversely impacted the entire tributary as evidenced by vegetative denuding and bank failure attributed to hoof shear. Agricultural land use (pastureland) adjacent to the stream corridor and uncontrolled cattle access to the stream for drinking water and shade resulted in unstable, steep to undercut streambanks, and accelerated severe to extreme streambank erosion. The unstable streambanks were contributing large volumes of suspended sediment and bedload material to the larger Silver Creek watershed. Utilizing the near bank stress method, adjusted for channel pattern and depositional features algorithm in RiverMorph[®] v.4.0.1, it was estimated 290 cubic yards per year (or 375 tons per year) of sediment was being eroded from the unstable streambanks along UT-A.

UT-B, UT-C and UT-B


The pre-restoration conditions of these stream reaches were not independently evaluated in the Restoration Plan. UT-B and UT-C were located in active pastureland adjacent to Silver Creek. Defined channels were obscured by scrub herbaceous ground cover that emerged among the stumps remaining after the tree clearing associated with the pine beetle infestation. These channel reaches were poorly defined and, in some areas, denuded due to cattle intrusion. The UT-D reach, inside the EEP Conservation Easement established and recorded for the project, emerges from a mature, deciduous hardwood forested riparian corridor that was avoided and was not adversely impacted by the project.

SILVER CREEK PRE- AND POST-RESTORATION PHOTOGRAPHS

Top of Mainstem Reach – Pre-Restoration

Top of Mainstem Reach – Post Restoration – Upstream J-Hook Rock Vane No. 1 – Downstream Cross-Vane No. 1 with Root Wad/Boulder Cut-Off Sills – Looking Upstream

Mainstem Reach - Cross-Vane No. 1 with Root Wad/Boulder Cut-Off Sills, looking Downstream

Mainstem Reach - Cross-Vane No.1 - Post Revetment - Looking Upstream

General Vicinity of Cross-Vane No. 2 - Pre-Restoration - Looking Upstream

Mainstem Reach - Cross-Vane No. 2 - Post Restoration - Looking Downstream

Mainstem Reach - Cross-Vane No. 2 - Post Restoration - Looking Upstream

UT-B - Drain from Farm Pond - Post Restoration

Mainstem Reach – Over Tightened Meander – Pre-Restoration

Mainstem Reach – Over Tightened Meander – Post-Restoration Prior to Rock Vane, Log Vane - J-Hook – Root Wad Combination Channel Stabilization Structures Installation

Mainstem Reach – Over Tightened Meander – Post-Restoration - Rock Vane – Boulder Toe Bank Reinforcement – Upstream Bend – Looking Downstream

Mainstem Reach – Over Tightened Meander – Post-Restoration - Log Vane - J-Hook – Root Wad Combination Structure – Mid-Bend – Looking North (Downstream)

Mainstem Reach – Over Tightened Meander – Post-Restoration - Log Vane - J-Hook – Root Wad Combination Structure - Lower Bend – Looking Downstream

Mainstem Reach - Constructed Riffle - Downstream End - Over Tightened Meander

Mainstem Reach - Abandoned Oxbow - Pre-Restoration

Mainstem Reach - Abandoned Oxbow - Riffle Cross-Section - Looking Upstream - Pre-Restoration

Mainstem Reach - Abandoned Oxbow - Debris Jam - Looking Downstream - Pre-Restoration

Log-Vane J-Hook Structure – Upstream from former Abandoned Oxbow – Post-Restoration -Looking Upstream

Constructed Riffle with Rock Toe Bank Reinforcement - Location of former Abandoned Oxbow Post Remediation – Looking Downstream

Dual-Winged Jetty Riffle with Random Boulder Cluster - Location of former Abandoned Oxbow – Post Remediation – Looking Downstream

Rock Vane with Upstream Boulder Cluster – At confluence of UT-D – Looking Downstream

J-Hook Rock Vane - Looking Upstream at the confluence of UT-D - Post Restoration

Dual Winged Jetty Riffle with Random Boulder Cluster – Downstream from confluence of UT-D – Looking Downstream

Single Arm Rock Vane with Root Wad Bank Stabilization at approximate mid-point between confluences of UT-C and UT-D with Silver Creek – Looking Downstream

Single Arm Rock Vane with Root Wad Bank Stabilization (shown above) – Post-Restoration Looking Upstream

Log Vane J-hook Combination Structure – Upstream from Confluence of UT-C – Post Remediation

Rock Toe Channel Reinforcement upstream from confluence of UT-C with Mainstem – Post-Restoration Looking Upstream

Single Arm Rock Vane above confluence of UT-C with Silver Creek Mainstem

Confluence of UT-C with Silver Creek Mainstem

Bottom of Mainstem Reach - Pre-Restoration - Looking Upstream

Bottom of Mainstem Reach – Log-Vane, J-Hook, Root Wad Combination Structure followed by Cross-Vane No. 4 – During Construction - End of Mainstem Project

Mainstem Reach - Log-Vane, J-Hook, Root Wad Combination Structure - During Construction - February 2007

Mainstem Reach - Log-Vane, J-Hook, Root Wad Combination Structure - After Seeding, Mulching and Jute Matting Right Bank - February 2007

Note: Complete photographic documentation of the Silver Creek Mainstem and UT-A restoration is keyed to the As-Built Plan sheets in Section 6.0 and presented in Appendix A.

2.0 RESTORATION SUMMARY

2.1 Mitigation Goals and Objectives

As discussed in the Restoration Plan for Silver Creek and an associated Unnamed Tributary, the mitigation goals and objectives for the project streams were met by restoring physical and biological functions of the project streams beyond pre-existing conditions. Pre-restoration conditions consisted of impaired, channelized, eroding and entrenched stream channels. The mitigation goals and objectives were met by providing:

- Stable stream channels with features indicative of a biologically diverse environment
- Restored connections between the bankfull width and floodprone width of the channels by restoring the floodprone area
- Improved physical aquatic habitat features
- Minimization of development and existing land use impacts to the stream
- Long-term protection of the stream corridors

Restoration of the streams has provided the desired habitat and stability features required to improve the quality of the stream for the long-term, such as:

- Reversing the effects of channelization
- Stabilizing eroding and undercut streambanks
- Development of instream habitat features
- Re-vegetation of the riparian corridors with native trees and shrubs and preservation of existing corridors
- Restoration of the floodprone area along the mainstem providing sediment and nutrient storage.

The restoration techniques utilized for the project tributary streams provide attributes described above using a variety of features recognized to support stability and biological function essential to ecosystem enhancement. Prior to restoration, these features were absent or diminished.

Restoration of the project streams re-established geomorphologic features consistent with natural stream channel characteristics. Results achieved are listed below:

- Bankfull channels constructed with the appropriate geometries to convey bankfull flows and transport suspended sediment and bedload materials available to the streams
- Stable channel patterns consistent with natural streams in the region
- Grade control and bank stabilization features, such as cross vanes, J-hook vanes and rock vane deflector weirs that enhance environmental attributes of the stream channels though the use of natural materials and native plantings
- Streambed structures constructed using strategically placed boulder dual winged jetties, root wads and log vanes, to re-establish, sort and transport substrate materials available to the streams
- Reconnection of project stream channels to functional floodplains
- Extensive indigenous riparian plantings

2.2 <u>Restoration Approach</u>

Engineering Field Reconnaissance

Silver Creek Mainstem

The stable, natural channel form for the Silver Creek mainstem is a Rosgen C4 stream type, based on detailed, quantitative analysis of a stable reference reach located approximately 2.4 miles upstream from the top of the altered reach within the Silver Creek watershed. Agricultural land use, uncontrolled cattle intrusion and associated hoof shear and vegetative denuding, channelization, degradation and extreme streambank erosion have altered the channel throughout the project reach, resulted in its pre-restoration, unstable F4 stream type.

The mitigation plan for Silver Creek utilized proven geomorphologic techniques developed by understanding and implementing stable channel dimension, pattern and profile, based on data extrapolated from reference reach boundary conditions and superimposing stable dimension, pattern and profile on the unstable form. The restoration approach incorporated re-establishing the floodprone area with appropriate elevation, width and valley slope, using stable attributes measured, quantified and extrapolated from reference reach boundary conditions, to the extent practicable for online, Priority Level 2 restoration.

UT-A to Silver Creek

UT-A emerges from a granite bedrock spring at the top of the reach. Along the upper 1,000 linear feet of the altered reach, the channel form was a classic Type I valley-confined, A1-A2 stream type with some bedrock control. In-stream boulders and flood-placed woody debris from leaning or fallen trees were present along the reach. The banks were unstable and steep to undercut. The vegetated riparian corridor along UT-A was visibly impaired. Cattle intrusion had adversely impacted the entire tributary as evidenced by vegetative denuding and bank failure attributed to hoof shear. Agricultural land use (pastureland) adjacent to the stream corridor and uncontrolled cattle access to the stream for drinking water and shade resulted in unstable, steep to undercut stream banks, accelerated down-slope movement of colluvium into the stream channel resulting in severe to extreme streambank erosion. The denuded, unstable streambanks were contributing large volumes of sediment and suspended solids to the larger Silver Creek watershed.

UT-A, in its unaltered, natural form, is a Rosgen A1-A2, transitioning to a B4 stream type with bed materials ranging in size from silt and sand to large cobbles, boulders and bedrock from the bottom to the top of the reach. The transition from a v-shaped, Rosgen Type I Valley confined "A" channel to a Rosgen Type II colluvial valley "B" stream type occurs along the lower one-third of the reach. Along this final 500 linear feet stream segment, the thalweg profile gradient flattens to less than four percent (0.04 ft/ft) and the floodprone width increases enough to allow small meanders to form across the stream's narrow floodplain. Since the terrain is less rugged along this stream segment, it was the preferred watering location for cattle grazing in the adjacent pastureland within the small, 48-acre watershed. An abandoned terrace exists adjacent to and along the right (east) bank along the final 200 feet of the reach, where the stream emerges onto Silver Creek's Rosgen Type VIII Valley floodplain.

Bankfull Discharge

Silver Creek Mainstem

For Silver Creek, bankfull discharge was determined through quantitative analysis of stable reference reach boundary conditions and comparison of predicted bankfull discharge through a stable riffle section located approximately 2.4 miles upstream from the impaired reach (project area). The reference reach is a stable, Rosgen C4 stream type with excellent connection to its healthy, deciduous hardwood forest floodplain. Calculated discharge for the reference reach riffle section was compared to stratified C-type streams data from Bankfull Regional Curves for North Carolina Mountain Streams data set, as included in the appendices of the multi-agency Stream Mitigation Guidelines document (USACE Wilmington District et al., April 2003). The calculated discharge using quantified reference reach data provided a very close match to the stratified data set. Bankfull characteristics for the altered mainstem reach were extrapolated from the stratified dataset. Bankfull discharge at the top of the impaired reach, with a drainage area of 8.01 square miles and interpolated from the regional curve data set, is 460 cubic feet per second (cfs). Independent HEC-RAS modeling predicted the same flow for this position in the watershed, verifying the bankfull discharge for a 1.7-year return interval flow, extrapolated from the stratified dataset. Under pre-restoration conditions, detailed HEC-RAS analysis predicted the 5-year peak discharge storm event (2,300 cfs) would fill the existing channel (i.e., bankfull discharge) and flow out onto the abandoned floodplain.

Unnamed Tributary

Bankfull discharge for UT-A was interpreted directly from regression equations published with the *Bankfull Regional Curves for North Carolina Mountain Streams*. The mountain streams regional curves data sets do not include data for A and B stream types with drainage areas less than one square mile. Therefore the regression equations developed from the regional curves data sets were used to extrapolate beyond the lower limits of verified bankfull dimensions, discharge and drainage area relationships. The area of a surveyed riffle cross-section near the bottom of UT-A reach, however, very closely matches the empirical relationship between drainage area and bankfull cross-sectional area extrapolated from the published regional curve data for North Carolina mountain streams. The predicted bankfull discharge for UT-A using the regional curve dataset regression equations is 14.7 cfs. The calculated as-built discharge for the restored UT-A is 16.6 cfs, based on profile slope, channel dimensions and substrate particle distributions.

Channel Morphology

As previously noted, existing morphology along the Silver Creek mainstem altered reach is Rosgen Valley Type VIII. The pre-restoration channel was an unstable F4 stream type. The restoration goal was to re-establish pattern, profile and dimension consistent with the stable C4 reference reach boundary conditions, to the extent practicable using a Priority Level 2 restoration approach. Summary morphologic and hydraulic data for the Brindle Creek Reference Reach, Altered, Proposed and As-Built Mainstem and Unnamed Tributary are presented in **Table 2**. Supporting documentation for the data presented in **Table 2** are provided in **Appendix E**.

In the original restoration plan submittal, an average belt width of 110 feet and bankfull channel width, mean depth, maximum depth, channel side slopes and width/depth ratio of 30 feet, 1.59 feet, 3.0 feet, and 1:1 respectively, was proposed to consistently achieve "C" stream type channel and floodplain morphology relationships (i.e., entrenchment ratio > 2.2; width/depth ratio > 12). Due to the high sand composition of the impaired streambanks, during construction a design change was

made to lay the banks back to more stable 3:1 side slopes, resulting in wider bankfull channel with a higher width/depth ratio, ranging from 25.51 to 52.16 with a mean value of 41.60. As a result, the As-Built Silver Creek mainstem is a Rosgen Type 2 valley; B4c stream type (profile gradient < 2 percent). The B4c stream type is a stable, low sediment supply stream channel (Rosgen, 1998). Post restoration calculations of near-bank stress and predicted negligible streambank erosion rates are consistent with the textbook B4c stream type classification.

Daminge Area (m ²) Image Area (m ²)			Table	2: Baseline I	Morphology an	d Hydraulic S	Summary							
Parameter Reference Reach Pre-Existing Condition Design As-Built Dimension Min Max Man Max			Silver Cı	eek Stream F	Restoration / E	EP Project No). D05016-01							
Dimension Min Max Mean Min Max Max <th></th> <th></th> <th></th> <th>Station/Re</th> <th>each: Silver Cr</th> <th>eek Mainstem</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				Station/Re	each: Silver Cr	eek Mainstem	1							
Drainage Area (m ²) Image Area (m ²)	Parameter	Re	eference Reac	h	Pre-E	xisting Condit	ion		Design		As-Built			
matrix matrix<	Dimension	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	
Floodprone Width (ft) (222.00) 37.00 84.00 60.00 54.0 145.0 93.9 82.81 114.45 1 BF Vcos Sectional Area (ft) (30.77) 139.70 23.044 176.46 (90.00) 83.59 103.55 BF Max Depth (ft) (12.8) 1.88 5.55 7.62 7.04 (30.0) 2.80 3.75 Width/Depth (ft) (17.7) 5.36 65.14 25.78 (18.87) 25.51 52.16 1.00 0.93 1.02 1.81 Be Max Depth (ft) (10.0) 3.89 4.07 3.88 (10.0) 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.00 0.93 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.0	Drainage Area (mi ²)			1.16			8.26			8.26			8.26	
BF Cross Sectional Area (ft) 30.77 139.70 230.44 176.46 90.00 83.59 103.55 BF Max Deph (ft) 1.28 1.28 5.45 3.95 1.59 1.29 1.81 BF Max Deph (ft) 1.72 6.57 7.62 7.04 30.00 2.80 3.75 Entrenchment Ratio 96.66 0.69 1.91 1.29 1.81 7.53 1.50 1.00 0.93 1.02 Bark Height Ratio 1.00 3.89 4.07 3.98 1.00 0.93 1.02 Metted Perimeter (ft) 26.58 35.78 152.95 75.32 33.18 46.98 70.20 Pattern - 1.16 1.51 4.28 3.23 . 2.71 1.27 1.78 Pattern - 1.16 1.51 4.28 3.23 . 2.71 1.27 1.78 Pattern - 1.16 1.51 1.28 3.23 1.70 1.78 . . 1.71 .76.3 . <td>BF Width (ft)</td> <td></td> <td></td> <td>24.02</td> <td>29.22</td> <td>122.47</td> <td>60.86</td> <td></td> <td></td> <td>30.00</td> <td>46.18</td> <td>69.81</td> <td>61.09</td>	BF Width (ft)			24.02	29.22	122.47	60.86			30.00	46.18	69.81	61.09	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Floodprone Width (ft)			232.00	37.00	84.00	60.00	54.0	145.0	93.9	82.81	114.45	101.39	
BF Max Depth (ft) Internet 1.72 6.57 7.62 7.04 3.00 2.80 3.75 Width/Depth (ft) 18.77 5.36 65.14 25.78 Image: Stress of Stress	BF Cross Sectional Area (ft ²)			30.77	139.70	230.44	176.46			90.00	83.59	103.55	91.23	
Width/Depth (ft) Image: style st	BF Mean Depth (ft)			1.28	1.88	5.45	3.95			1.59	1.29	1.81	1.53	
Entrenchment Ratio 9.66 0.69 1.91 1.29 1.80 4.83 3.13 1.59 1.79 Bank Height Ratio 1.00 3.89 4.07 3.98 4.03 3.18 6.03 0.03 1.00 0.093 1.02 Wetted Perimeter (1) 2.658 35.78 152.95 75.32 4 3.318 46.98 70.20 Pattern	BF Max Depth (ft)			1.72	6.57	7.62						3.75	3.32	
Bank Height Ratio Image: Mark Height Ratio Image: Ratio Ratio <thimage: ratio="" ratio<="" th=""> <thimage: ratio<="" td="" th<=""><td>Width/Depth (ft)</td><td></td><td></td><td>18.77</td><td>5.36</td><td>65.14</td><td>25.78</td><td></td><td></td><td>18.87</td><td>25.51</td><td>52.16</td><td>41.60</td></thimage:></thimage:>	Width/Depth (ft)			18.77	5.36	65.14	25.78			18.87	25.51	52.16	41.60	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Entrenchment Ratio			9.66	0.69	1.91		1.80	4.83	3.13		1.79	1.67	
Hydraulic Radius (ft) Image: Marking the state of the st	Bank Height Ratio			1.00	3.89	4.07				1.00	0.93	1.02	0.98	
Pattern Image: Second sec	Wetted Perimeter (ft)			26.58	35.78	152.95	75.32			33.18	46.98	70.20	61.84	
*Channel Beltwidth (ft) 44.17 46.50 45.22 37 84 60 54.0 145.0 93.9 82.81 181.94 1 *Radius of Curvature (ft) 12.97 24.44 17.67 45.0 75.0 60.0 46.07 185.40 *Meander Wavelength (ft) 88.23 115.70 10.80 191.8 73.79 191.70 1 *Meander Width Ratho 1.84 1.94 1.88 0.61 1.38 0.99 1.8 4.8 3.1 1.3 3.0 Profile 9.36 0.25.7 6.5 10.5 12.5 8.03 0.99 1.8 4.8 3.1 1.3 3.0 Profile 0.0362 0.0211 0.0045 0.0096 0.0069 0.00056 0.0039 0.1787 0 Meander Width Rath 11.0 31.6 17.4 20.1 36.1 26.3 2.0 65.7 17.1 56.9 Substrate 38.5	Hydraulic Radius (ft)			1.16	1.51	4.28	3.23			2.71	1.27	1.78	1.51	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pattern													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	*Channel Beltwidth (ft)	44.17	46.50	45.22	37	84	60	54.0	145.0	93.9	82.81	181.94	109.79	
*Meander Width Ratio 1.84 1.94 1.88 0.61 1.38 0.99 1.8 4.8 3.1 1.3 3.0 Profile Riftle Slope (fr)ft 0.0125 0.0362 0.021 0.0045 0.0096 0.005 0.0055 0.0039 0.178 0 Pool Length (ft) 0.102 0.0362 0.0211 0.0045 0.0096 0.005 0.0055 0.0039 0.178 0 Substrate 3.8.5 12.9 3.8.5 26.6 12.9 3.8.5 26.6 15.5 26.9 28.5 Substrate 3.8.5 12.9 3.8.5 26.6 12.9 3.8.5 26.6 15.5 26.9 28.5 Substrate 3.8.5 12.9 3.8.5 26.6 15.9 26.5 25.3 21.2 30.4 20.5	*Radius of Curvature (ft)	12.97	24.44	17.67				45.0	75.0	60.0	46.07	185.40	68.70	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	*Meander Wavelength (ft)	88.23	115.70	104.80						191.8	73.79	191.70	124.86	
Riffle Length (ft) 19.0 31.0 25.7 6.5 10.5 12.5 32.9 9.4 47.7 Riffle Slope (ft/ft) 0.0125 0.0362 0.0211 0.0045 0.0096 0.0069 0.0056 0.0039 0.1787 0 Pool Length (ft) 11.0 31.6 17.4 20.1 36.1 26.3 0 65.7 17.1 56.9 Pool Spacing (ft) 67.6 77.5 71.4 101.1 149.0 129.1 0 131.4 0.6 38.3 Substrate v v Off (mm) 0 0.0125 0.02 D50 (mm) Substrate v v V v v v v Motional Reach Parameters v v v Additional Reach Parameters v v <th colspa<="" td=""><td>*Meander Width Ratio</td><td>1.84</td><td>1.94</td><td>1.88</td><td>0.61</td><td>1.38</td><td>0.99</td><td>1.8</td><td>4.8</td><td>3.1</td><td>1.3</td><td>3.0</td><td>1.8</td></th>	<td>*Meander Width Ratio</td> <td>1.84</td> <td>1.94</td> <td>1.88</td> <td>0.61</td> <td>1.38</td> <td>0.99</td> <td>1.8</td> <td>4.8</td> <td>3.1</td> <td>1.3</td> <td>3.0</td> <td>1.8</td>	*Meander Width Ratio	1.84	1.94	1.88	0.61	1.38	0.99	1.8	4.8	3.1	1.3	3.0	1.8
Riffle Slope (fr/h) 0.0125 0.0362 0.0211 0.0045 0.0096 0.0069 0 0.0056 0.0039 0.1787 0 Pool Length (ft) 11.0 31.6 17.4 20.1 36.1 26.3 65.7 17.1 56.9 Pool Spacing (ft) 67.6 77.5 71.4 101.1 149.0 129.1 131.4 36.4 388.3 Substrate U U D50 (mm) 38.5 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 26.6 12.9 38.5 20.7	Profile													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Riffle Length (ft)	19.0	31.0	25.7	6.5	10.5	12.5			32.9	9.4	47.7	28.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.0125	0.0362	0.0211	0.0045	0.0096	0.0069			0.0056	0.0039	0.1787	0.0242	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11.0	31.6	17.4	20.1	36.1	26.3			65.7	17.1	56.9	35.7	
Substrate Image: Constraint of the constrai	• • • • •	67.6	77.5	71.4	101.1	149.0	129.1			131.4	36.4	388.3	145.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												h		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D50 (mm)			38.5	12.9	38.5	26.6	12.9	38.5	26.6	15.5	26.9	21.1	
Valley Length (ft) 294.00 2077 2077 2077 0 0 Channel Length (ft) 353.00 3040 2959 0 0 Sinuosity 1.2 1.46 1.43 0 0 Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.0025 0 0 BF Slope (ft/ft) 0.0115 ** 0.0026 0 0 0 0 0 Rosgen Classification C4 F4 B4c C4 B4 B4 C4 B4 B4 C4 B4 C4 C4 <t< td=""><td></td><td></td><td></td><td>60.2</td><td>20.6</td><td>60.2</td><td>52.3</td><td>20.6</td><td>60.2</td><td>52.3</td><td>21.2</td><td>30.4</td><td>26.5</td></t<>				60.2	20.6	60.2	52.3	20.6	60.2	52.3	21.2	30.4	26.5	
Valley Length (ft) 294.00 2077 2077 2077 0 0 Channel Length (ft) 353.00 3040 2959 0 0 Sinuosity 1.2 1.46 1.43 0 0 Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.0025 0 0 BF Slope (ft/ft) 0.0115 *** 0.0026 0 0 0 0 0 Rosgen Classification C4 F4 B4c C4 B4 B4 C4 B4 *Habitat Index 0 0 0 0 0 0 0 0												h		
Valley Length (ft) 294.00 2077 2077 2077 0 0 Channel Length (ft) 353.00 3040 2959 0 0 Sinuosity 1.2 1.46 1.43 0 0 Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.0025 0 0 BF Slope (ft/ft) 0.0115 ** 0.0026 0 0 0 0 0 Rosgen Classification C4 F4 B4c C4 C4 B4 B4 C4 B4 C4 C4 <t< td=""><td>Additional Reach Parameters</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Additional Reach Parameters													
Channel Length (ft) 353.00 3040 2959 6 Sinuosity 1.2 1.46 1.43 6 6 Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.00025 0 0 0 BF Slope (ft/ft) 0.0115 *** 0 0.0026 0				294.00			2077			2077			2077	
Sinusity 1.2 1.46 1.43 0 Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.00025 0 0 BF Slope (ft/ft) 0.0115 ** 0.0026 0 0 Rosgen Classification C4 F4 B4c C4 B B *Habitat Index Image: Comparison of the section of the													2905	
Water Surface Slope (ft/ft) 0.0106 0.00218 0.00299 0.00259 0.00255 0.00025 0.000255 <td></td> <td> </td> <td>1.40</td>													1.40	
BF Slope (ft/ft) 0.0115 ** 0.0026 0 Rosgen Classification C4 F4 B4c C4 B4c C4 B4c C4 B4c C4			Ī		0.00218	0.00299						[0.0026	
Rosgen ClassificationC4F4B4cC4C4B*Habitat Index <td></td> <td> </td> <td>0.0027</td>													0.0027	
*Habitat Index	• • • •						F4	B4c	C4				B4c	
							-							
	*Macrobenthos													

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria Note: Blank fields = Historic project documentation necessary to provide these data were unavailable at the time of this report submission. **Insufficient field indicators to estimate bankfull under altered F4 channel conditions.

ECOSYSTEM ENHANCEMENT PROGRAM EEP Contract # D05016-1

Bire tree Break Bir for the Bir b	1				
Parameter Reference Rea Pre-Existing Condition Min Max Mean Min Max Med Min Dimension Drainage Area (mi) I.16 0.08 0.08 0.08 BF Width (ft) 232.00 Confined 15.00 13.72 0.06 BF Cross Sectional Area (ft) 30.77 Image Area 0.26 0.26 0.26 BF Max Depth (ft) 1.28 0.26 0.26 0.26 0.26 BF Max Depth (ft) 1.877 0.90 0.25 0.90 0.25 0.90 0.9					
Dimension Min Max Mean Min Max Med Min Drainage Area (mi ²) 1.16 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.02 13.72 0.02 <th></th> <th></th> <th></th> <th></th> <th></th>					
Drainage Area (mi ²) 1.16 0.08 BF Width (ft) 24.02 13.72 Floodprone Width (ft) 232.00 Confined 15.00 Confined BF Cross Sectional Area (ft ³) 30.77 3.54 0.26 BF Man Depth (ft) 1.28 0.26 0.90 Width/Depth (ft) 1.72 0.90 0.90 More Max Depth (ft) 1.72 0.90 0.26 BF Max Depth (ft) 1.72 0.90 0.27 Entrenchment Ratio 9.66 1.09 1.91 Wetted Perimeter (ft) 26.58 13.97 1.91 Metted Perimeter (ft) 26.58 13.97 1.91 Metted Perimeter (ft) 26.58 13.97 1.91 Metted Perimeter (ft) 26.51 1.91 1.92 Metted Perimeter (ft) 1.16 0.255 1.92 Metted Perimeter (ft) 1.92 24.44 17.67 1.92 Meander Wavelength (ft) 18.823 115.70 104.80 1.92 M	Design		As-Built		
BF Width (ft) 24.02 13.72 Floodprone Width (ft) 232.00 Confined 15.00 15.00 Confined BF Cross Sectional Area (ft ²) 30.77 3.54	Max	Med	Min	Max	Mean
Floodprone Width (ft) 232.00 Confined 15.00 Confined BF Cross Sectional Area (ft?) 30.77 3.54 3.54 BF Maan Depth (ft) 1.28 0.26 0.26 BF Max Depth (ft) 1.28 0.90 0.26 Width/Depth (ft) 1.28 0.90 0.90 Entrenchment Ratio 9.66 1.09 52.77 Bank Height Ratio 1.00 1.91 0.25 Wetted Perimeter (ft) 26.58 0.25 0.25 Pattern 0.25 0.25 0.25 *Radius of Curvature (ft) 12.97 24.44 17.67 0.25 *Meander Wavelength (ft) 88.23 115.70 104.80 0.25 *Meander Width Ratio 1.84 1.94 0.25 0.25 Profile 1.84 1.94 0.88 0.25 0.25 *Meander Width Ratio 1.84 1.94 0.88 0.25 0.25 Profile 0.03		0.08			0.08
BF Cross Sectional Area (ft²) 30.77 3.54 BF Maan Depth (ft) 1.28 0.26 BF Max Depth (ft) 1.72 0.90 Width/Depth (ft) 1.72 0.90 Width/Depth (ft) 1.72 0.90 Bank Height Ratio 9.66 1.09 Bank Height Ratio 1.00 1.91 Wetted Perimeter (ft) 26.58 13.97 Pattern 0.25 13.97 *Meander Ratius of Curvature (ft) 12.97 24.44 17.67 *Meander Wath Ratio 1.84 1.94 1.88 14.16 *Meander Wath Ratio 1.84 1.94 1.88 14.16 Profile 1.02 0.31.0 25.7 14.16 Substrate 11.0 31.16 17.4 14.16 Pool Length (ft) 0.0125 0.0362 0.0211 14.16 Substrate 11.0 31.6 17.4 14.16 Meader Wath Ratio 1.84 1.94 1.84 1.94 1.84 Meader Wath Ratio 1.84 1.94 1.86 1.16 <t< td=""><td></td><td>8.00</td><td>6.81</td><td>8.11</td><td></td></t<>		8.00	6.81	8.11	
BF Mean Depth (ft) 1.28 0.26 BF Max Depth (ft) 1.72 0.90 Width/Depth (ft) 18.77 52.77 Bank Height Ratio 9.66 1.09 Bank Height Ratio 9.66 1.09 Wetted Perimeter (ft) 26.58 13.97 Hydraulic Radius (ft) 1.16 0.25 Pattern 0.26 0.25 *Radius of Curvature (ft) 12.97 24.44 17.67 *Meander Wavelength (ft) 88.23 115.70 104.80 1 *Meander Width Ratio 1.84 1.94 1.88 1 1 Profile 1.00 31.0 25.7 1.6 1 1 Substrate 1.84 1.94 1.88 1.6 1.6 1.6 1.6 Meander Width Ratio 1.84 1.94 1.88 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.2 <td< td=""><td>15.00</td><td>15.00</td><td>13.28</td><td>14.57</td><td></td></td<>	15.00	15.00	13.28	14.57	
BF Max Depth (ft) 1.72 0.90 Width/Depth (ft) 18.77 52.77 Entrenchment Ratio 9.66 1.09 Bank Height Ratio 10.0 1.91 Wetted Perimeter (ft) 26.58 13.97 Metted Perimeter (ft) 1.16 0.25 Pattern 1.16 0.25 *Additional Beltwidth (ft) 44.17 45.22 1 *Radius of Curvature (ft) 12.97 24.44 17.67 1 *Meander Wavelength (ft) 88.23 115.70 104.80 1 1 *Meander Wavelength (ft) 88.23 115.70 104.80 1 1 *Meander Width Ratio 1.84 1.94 1.88 1 1 1 Profile $$		3.50	3.51	3.59	
Width/Depth (ft) 18.77 52.77 Entrenchment Ratio 9.66 1.09 Bank Height Ratio 1.00 1.91 Wetted Perimeter (ft) 26.58 13.97 Hydraulic Radius (ft) 1.16 0.25 Pattern 0.25 *Radius of Curvature (ft) 12.97 24.44 17.67 *Readius of Curvature (ft) 18.23 115.70 104.80 100 *Meander Wavelength (ft) 88.23 115.70 104.80 100 100 *Meander Wavelength (ft) 1.84 1.94 1.88 100 100 100 Profile U U U U U U U U Substrate U U U U U U U Meditional Reach Parameters U U U U U U Metter Parameters U U U U U U U Metter Parameters U U U U U U		0.50	0.43	0.53	
Entrenchment Ratio 9.66 1.09 Bank Height Ratio 1.00 1.91 Wetted Perimeter (ft) 26.58 13.97 Mydraulic Radius (ft) 1.16 0.25 Pattern 1.16 0.25 *Channel Beltwidth (ft) 44.17 46.50 45.22 0.25 *Radius of Curvature (ft) 12.97 24.44 17.67 0.25 *Meander Wavelength (ft) 88.23 115.70 104.80 0.025 *Meander Wavelength (ft) 1.84 1.94 1.88 0.025 Profile 1.84 1.94 1.88 0.025 0.021 Riffle Length (ft) 19.0 31.0 25.7 0.0362 0.0211 Pool Length (ft) 0.0125 0.0362 0.0211 0.0125 0.021 Substrate 11.0 31.6 17.4 0.0125 0.021 0.0125 0.021 Meditional Reach Parameters 0.0125 0.0362 0.0211 0.0125 0.0125 0.0125 0.0125 0.0125		1.00	0.81	1.01	
Bank Height Ratio 1.00 1.91 Wetted Perimeter (ft) 26.58 13.97 Hydraulic Radius (ft) 1.16 0.25 Pattern 0.25 *Channel Beltwidth (ft) 12.97 24.44 17.67 100 *Radius of Curvature (ft) 12.97 24.44 17.67 100 100 *Meander Wavelength (ft) 88.23 115.70 104.80 100 100 *Meander Width Ratio 1.84 1.94 1.88 100 100 100 Profile U U U U U U U Riffle Length (ft) 19.0 31.0 25.7 U U U Profile U		16.00	12.85	18.86	
Metted Perimeter (ft) 26.58 13.97 Hydraulic Radius (ft) $ 0.25$ Pattern $ 0.25$ *Channel Beltwidth (ft) 44.17 46.50 45.22 $ -$ *Radius of Curvature (ft) 12.97 24.44 17.67 $ -$ *Meander Wavelength (ft) 88.23 115.70 104.80 $ -$ *Meander Width Ratio 1.84 1.94 1.88 $ -$ Profile $ -$ Riffle Length (ft) 19.0 31.0 25.7 $ -$ Profile $ -$ Matter Pool Length (ft) 0.0125 0.0362 0.0211 $ -$ Mool Length (ft) 0.0125 0.0362 0.0211 $ -$ Substrate $ -$ <		1.88	1.80	1.95	
Hydraulic Radius (ft) Image: formation of the system of the		1.00	1.00	1.00	
Pattern Image: Channel Beltwidth (ft) 44.17 46.50 45.22 Image: Channel Beltwidth (ft) 44.17 46.50 45.22 Image: Channel Beltwidth (ft) 12.97 24.44 17.67 Image: Channel Beltwidth (ft) 11.04 11.88 Image: Channel Beltwidth (ft) 19.0 31.0 25.7 Image: Channel Beltwidth (ft) 11.0 31.6 17.4 Image: Channel Beltwidth (ft) 11.0 31.6 17.4 Image: Channel Beltwidth (ft) 11.0 31.6 17.4 Image: Channel Beltwidth (ft) 11.0 31.6 11.0 11.6 11.0 11.6 11.0 11.0 11.0 11.0 11.0 11.0		9.00	6.97	8.28	
*Channel Beltwidth (ft) 44.17 46.50 45.22 *Radius of Curvature (ft) 12.97 24.44 17.67 *Meander Wavelength (ft) 88.23 115.70 104.80 *Meander Width Ratio 1.84 1.94 1.88 Profile <		0.39	0.42	0.50	
*Radius of Curvature (ft) 12.97 24.44 17.67 Image: Constraint of					al faith and a second
*Radius of Curvature (ft) 12.97 24.44 17.67 Image: Constraint of			10.80	14.57	12.95
*Meander Width Ratio 1.84 1.94 1.88 Profile			9.32	124.90	23.59
Profile Image: Constraint of the second secon	-		58.82	106.30	73.72
Riffle Length (ft) 19.0 31.0 25.7 Riffle Slope (ft/ft) 0.0125 0.0362 0.0211 Pool Length (ft) 11.0 31.6 17.4 Pool Spacing (ft) 67.6 77.5 71.4			1.45	1.95	1.74
Riffle Slope (ft/ft) 0.0125 0.0362 0.0211 Image: Constraint of the straint of th	Mining analysis and state				
Riffle Slope (ft/ft) 0.0125 0.0362 0.0211 Image: Constraint of the straint of th			1.34	47.90	15.30
Pool Length (ft) 11.0 31.6 17.4 Image: Constraint of the state of the			0.0344	0.6094	0.1389
Substrate 38.5 D50 (mm) 38.5 D84 (mm) 60.2 Additional Reach Parameters			6.07	22.79	12.43
Substrate Image: Substrate			10.19	143.20	55.63
D84 (mm) 60.2 60.2 60.2 Additional Reach Parameters 60.2 60.2 60.2 60.2 Additional Reach Parameters 60.2 <td></td> <td></td> <td>10.115</td> <td>110120</td> <td>00100</td>			10.115	110120	00100
D84 (mm) 60.2 0 0 0 Additional Reach Parameters 0 0 0 0 Valley Length (ft) 294.00 1426 1426 Channel Length (ft) 353.00 1508 1.06			6.9	15.8	11.4
Additional Reach ParametersImage: Constraint of the second se			20.2	42.4	31.3
Valley Length (ft) 294.00 1426 Channel Length (ft) 353.00 1508 Sinuosity 1.2 1.06			20.2	12.1	5110
Valley Length (ft) 294.00 1426 Channel Length (ft) 353.00 1508 Sinuosity 1.2 1.06					
Channel Length (ft) 353.00 1508 Sinuosity 1.2 1.06		1426			1426
Sinuosity 1.2 1.06		1533			1552
		1.07			1.09
Water Surface Slope (ft/ft) 0.0106 0.0350 0.0500 0.0425 0.0350	0.0500	0.0425			0.0427
BF Slope (ft/ft) 0.0115 ** 0.037		0.0455			0.0469
Rosgen Classification C4 A>B	A1/A2> B4a	010100			B4a
*Habitat Index					שדמ
*Macrobenthos					

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria Note: Blank fields = Historic project documentation necessary to provide these data were unavailable at the time of this report submission. **Insufficient field indicators to estimate bankfull under altered channel conditions.

ECOSYSTEM ENHANCEMENT PROGRAM EEP Contract # D05016-1

Channel Stability Assessment

Silver Creek Mainstem

Silver Creek was a vertically contained stream that had abandoned its floodplain due to a lowering of base level and was characterized by 7 to 9 feet high, vertical to undercut streambanks. The consequences of channelization, cattle intrusion, confinement (lateral containment), major floods, changes in sediment regime and loss of riparian vegetation are attributed causes and effects for preexisting conditions along the mainstem reach. The effects of these anthropogenic changes resulted in accelerated streambank erosion, land loss, aquatic habitat loss, lowering of the water table, land productivity reduction and in-stream and downstream sedimentation. Near-bank stress at a critical riffle cross-section, located at altered reach profile station 12+52.50, was approximately 2.24 lbs/square foot, based on design calculations. The near vertical, denuded 8-feet streambanks at this location were typical of the existing impaired 3,040 linear feet mainstem project corridor. Utilizing the near-bank stress method algorithm in RiverMorph[®] v.4.0.1, it was estimated 5,570 cubic yards per year (or 6,980 tons per year) of sediment was being eroded from the unstable streambanks along the mainstem prior to restoration.

Under restored conditions, the near-bank stress method algorithm in RiverMorph[®] v.4.0.1 was ran again, using bankfull geometry, hydraulic slope and existing streambank slopes at riffle cross-section number 4 at as-built profile station 12+80.37 (Riffle XS-4, 12+80.37). The model input parameters and predicted streambank erosion rates are as follow:

As-Built Predicted Streambank Erosion Rates for Silver Creek Mainstem

<u>Input Parameters</u> Bankfull Mean Depth = 1.48 ft. Average Bankfull Slope = 0.00265 ft/ft. Near-Bank Maximum Depth = 2.8 ft.

<u>Output Results</u> Shear Stress = 0.24 lbs/sq ft. Near-Bank Shear Stress = 0.00 lbs/sq ft. Near-Bank Adjective Streambank Erosion Rating = Very Low Predicted Streambank Erosion Rates = 0.0 cubic yards/year, or 0.0 tons/year

UT-A to Silver Creek

UT-A channel was a classic Type I valley confined, A1-A2 stream type transitioning to a Type II colluvial valley, B4-B5 stream type in the lower third of the altered reach. The upper two-thirds of the reach exhibits some bedrock control, in-stream boulders together with flood placed woody debris from leaning or fallen trees along the unstable, steep to undercut streambanks under existing conditions. The impaired riparian vegetative communities exacerbated streambank erosion rates and down-slope movement of colluvium. Cattle intrusion had adversely impacted the entire tributary as evidenced by vegetative denuding and bank failure attributed to hoof shear. Agricultural land use (pastureland) adjacent to the stream corridor and uncontrolled cattle access to the stream for drinking water and shade resulted in unstable, steep to undercut streambanks, and accelerated severe to extreme streambank erosion. The unstable streambanks were contributing large volumes of suspended sediment and bedload material to the larger Silver Creek watershed. Utilizing the near bank stress method, adjusted for channel pattern and depositional features algorithm included in

RiverMorph[®] v.4.0, it was estimated 290 cubic yards per year (or 375 tons per year) of sediment is being eroded from the unstable stream banks along UT-A.

Under restored conditions, the near-bank stress method algorithm in RiverMorph[®] v.4.0.1 was utilized again, using bankfull geometry, hydraulic slope and existing streambank slopes at riffle cross-section number 1 at as-built profile station 3+21.30 (Riffle XS-1 – UT-A, 3+45.15). The model input parameters and predicted streambank erosion rates are as follow:

As-Built Predicted Streambank Erosion Rates for UT-A

Input Parameters

Bankfull Mean Depth = 0.53 ft. Average Bankfull Slope = 0.04265 ft/ft. Near-Bank Maximum Depth = 1.01 ft.

Output Results

Shear Stress = 1.41 lbs/sq ft. Near-Bank Shear Stress = 0.00 lbs/sq ft. Near-Bank Adjective Streambank Erosion Rating = Very Low Predicted Streambank Erosion Rates = 0.0 cubic yards/year, or 0.0 tons/year

Reference Reach Data Collection

A stable reference reach, Brindle Creek, was selected using recent high-resolution (one pixel = six inches on the ground) aerial orthophotography (February 2005) obtained from the Burke County GIS Department and NCDOT LiDAR digital elevation model (DEM) used to generate 10-foot contours for Silver Creek Watershed tributary to the restoration. Two complete meander wavelengths along the reference reach were evaluated using accepted reference reach classification techniques and procedures (D.L. Rosgen, 1994).

The location of the reference reach in relation to the project is shown on **Figure 3**. The top of the reference reach begins at 35°37'07" North Latitude and 81°48'58" West Longitude (NAD 83, UTM Zone 17 Coordinates 691,930.8729 N, 1,163,198.3476 E GPS Reference Point). The drainage area tributary to the reference reach is 1.16 square miles.

Dimension, pattern, profile and substrate data were collected along the reference reach and quantitatively evaluated using RiverMorph[®] v.4.0.1 software application. Reference reach classification geomorphologic summary reports are presented in **Appendix B**.

Reference Reach Classification

The reference reach is a stable, Rosgen C4 stream type with excellent connection to its healthy, deciduous hardwood forest floodplain. Calculated discharge for a stable reference reach riffle crosssection was compared to stratified C Type streams data from *Bankfull Regional Curves for North Carolina Mountain Streams* data set. The calculated discharge using quantified reference reach data is a very close match to the stratified data's empirical relationships.

Reference Reach Discharge

The calculated bankfull discharge, using quantified and verified reference reach data collected at a stable riffle cross-section is 96.1 cfs and very closely matches the empirical relationship between drainage area and discharge using the *Bankfull Regional Curves for North Carolina Mountain Streams* dataset, stratified by C type streams.

Channel Morphology

Stream channel morphology data for the Brindle Creek reference reach, the Silver Creek mainstem, and UT-A is presented in tabular format on **Table 2**.

Channel Stability Assessment

The reference reach plant community extends over the streambanks into the active channel. High root densities and depths were observed at both stable riffle and pool locations throughout the reference reach, with healthy communities of canopy, mid-story, shrub and herbaceous species present. Best-fit trend lines drawn through the bankfull indicator points, water surface and thalweg points, respectively, on the longitudinal profile were essentially parallel. There is no indication of head cutting, downcutting, streambank erosion, aggradation or degradation. The reference reach is an extremely stable, second-order C4 stream channel, with a large gravel to small cobble streambed substrate, based on quantitative analysis of reference reach boundary conditions measured in the field.

Vegetation

The reference reach exists within a second-growth, forested floodplain containing mature trees, saplings, and some shrubs. Tree species observed along the reference reach include *Pinus taeda*, *Platanus occidentalis*, *Quercus rubra* (red oak), and *Fagus grandifolia* (American beech). Scattered *Symplocos tinctoria* (common sweetleaf) shrubs were also present. Vegetative cover along the reference reach is much more dense and intact than that along Silver Creek and UT-A. The reference reach flows through a wide forested area, rather than a narrow riparian corridor. Vegetation along the reference reach is undisturbed, and tree roots along the channel are providing stability along the reach.

Silver Creek Mainstem

The restoration approach implemented along the mainstem of Silver Creek restores stable pattern, profile, dimension and biological function. This was be accomplished by raising the streambed using grade control structures, including three (3) cross-vanes and eight (6) J-hook log vanes and two (2) J-hook rock vanes, two (2) dual winged jetties with random boulder placement to reduce critical shear stress in the near bank region while maintaining flow velocities required to entrain coarse gravel, based upon streambed particle size distributions collected from both the stable reference reach and the altered mainstem reach. Four (4) single arm rock vanes were installed in critical bends to divert bankfull flows away from the streambanks into the center of the channel. Four (4) constructed riffles were installed to maintain entrainment velocities and enhance aquatic habitat via natural aeration through the structures. Schools of fish returned to the reach during construction and built spawning beds in the gravels sorted out in the glides coming out of the pools. The streambed structures have created aquatic habitat and are preventing the development of deleterious mid-channel, lateral and transverse depositional sand and gravel bars features from forming within the active channel. The

As-Built plan sheets showing the improvements on the Silver Creek mainstem (Sheets AB-2/10 through AB-6/10) are included in **Section 6.0**.

Unnamed Tributary to Silver Creek

The fundamental approach used to stabilize UT-A within its valley confined stream corridor was accomplished by appropriately sizing the channel to convey bankfull flows, reshaping and stabilizing steep to undercut banks with heavy coir fabric jute matting, combined with implementing an aggressive native revetment plan and excluding cattle from the riparian corridor. Sixteen (16) steppools were constructed at appropriate spacings to raise the streambed and dissipate energy during bankfull and greater flows along the reach. Additionally, ten (10) constructed riffles were installed to provide grade control and stability along the reach. Outside meander bends, near the bottom of the reach, are stabilized with rock toe, coir roll, jute matting, live stem bank reinforcement. The plan sheets showing the as-built condition of UT-A stream (AB-7/10 through AB-10/10) are included in Appendix 1.

As-Built Channel Classification

The as-built mainstem channel is a stable B4c (entrenchment ration < 2.2, profile gradient < 2%) Rosgen Stream Type, with restored pattern, profile, dimension to entrain its bedload without aggrading or degrading. The as-built Unnamed Tributary stream is a Rosgen B4a Stream Type (profile gradient > 4%). **Table 3** summarizes the restoration structure and objectives for Silver Creek and UT-A.

2.3 Restoration Summary

		Table 3: Restorat	tion Summary		
	Project Nun	nber DD05016-1 ((Silver Creek Resto	ration)	
Tributary	Pre-existing	Restored	Restoration Level	Credit Ratio*	SMUs
Reach ID	length	Length			
Silver Creek	3,040 ft	2,905 ft	Priority Level II	1.0	2,905
Mainstem	5,040 h	2,905 It	Restoration	1.0	2,905
Unnamed			Priority Level II		
Tributary A	1,508 ft	1,552 ft	Restoration	1.0	1,552
(UT-A)			Restoration		
Unnamed					
Tributary B	66 ft	66 ft	Preservation	5.0	13
(UT-B)					
Unnamed					
Tributary C	48 ft	48 ft	Preservation	5.0	10
(UT-C)					
Unnamed					
Tributary D	52 ft	52 ft	Preservation	5.0	10
(UT-D)					
Totals	4,714 ft	4,623 ft			4,490

A summary of the restoration activities for the project are presented in **Table 3** below.

*Feet of stream/SMU credit.

3.0 MONITORING PLAN

To demonstrate the success of the project, three forms of monitoring will be performed: (1) photo documentation; (2) ecological function; and (3) channel stability measurements. Long-term success criteria will be evaluated by monitoring and documenting the following:

- Channel aggradation or degradation
- Streambank erosion
- Effectiveness of erosion control measures
- Presence of instream bar deposits
- Health and survival of indigenous, non-invasive vegetation
- Changes in as-built channel pattern, profile and dimension

Parameters included in the annual stream monitoring to ensure the success of the restoration activities will include stream channel surveys along longitudinal profiles and monumented cross sections, pebble counts across representative riffle and pool cross-sections, photographs, and vegetation surveys.

The restoration site will be monitored for five consecutive years or until the required success criteria have been met as determined by North Carolina Division of Water Quality (DWQ) and the Wilmington District of the U.S. Army Corps of Engineers (USACE). Channel stability monitoring including measurements and photographs will be performed during the November 2007. Planting occurred during the spring of 2007. Per agreement reached with the EEP, the planted vegetation will be monitored during the 2007 growing season, during September or October. Monitoring will be conducted in accordance with the multi-agency, North Carolina Stream Mitigation Guidelines (April 2003) applicable to Restoration and Enhancement Level I projects and the template *Content, Format and Data Requirements for EEP Monitoring Reports, Version 1.2* (11/16/06). Vegetation monitoring will be conducting in accordance with *CVS-EEP Protocol for Recording Vegetation, Version 4.0* (Lee, M.T., Peet, RK., Roberts, S.R., Wentworth, T.R. 2006) for Levels 1 and 2 Plot Sampling

Monitoring reports and discussions of remedial actions will take place with EEP. EEP will review the monitoring documents and make them available to the agencies after the review period. Decision making regarding remediation will be between EEP and WRC and its agents or representatives. Agency interaction will take place through permit requests for maintenance should they become necessary. Agency interaction will take place at the end of the monitoring period.

3.1 Stream Channel Monitoring

Stream channel stability will be physically monitored at the 10 permanent, monumented crosssections. Stream stability and pattern will also be evaluated along 3,000 linear feet of long-term monitoring longitudinal profiles (1,955 linear feet on the Silver Creek mainstem and 1,045 linear feet on UT-A) Photographs will be taken up-stream, down-stream and across channel at each monumented cross-section on an annual basis. The monumented cross-section locations and longitudinal profiles were surveyed immediately following construction as part of the "as-built" survey and are shown on the As-Built Plan sheets. The As-Built Plan sheets in **Section 6.0** include the dimension, pattern, and profiles of the constructed stream channels. The As-Built condition (Year 0) will be utilized as baseline to compare future monitoring surveys and subsequently to determine channel stability and transition. Year 0 "As-Built" Long-Term Monitoring Profiles are included in **Appendix C**. Year 0 "As-Built" Long-Term Monitoring Cross-Section summary templates are included in **Appendix D**. Yearly monitoring will also include pebble counts to assess particle distributions of streambed materials. Pebble count data will be collected at each of the ten monumented cross-section locations representative of the constructed project reaches: five cross-sections through pools and five cross-sections through riffles. The number and particles in standard size classes will be reported each year to assess aquatic habitat, sediment transport, sorting and depositional trends, as well as stream stability over time. Annual inspection of in-stream structures will also occur to verify proper function and channel stability. Stream channel monitoring surveys will be completed annually for five consecutive years, starting in November 2007 (Year 1) six months after construction completion and permanent revetment of the stream corridors during April and May 2007.

Bankfull flow events will be documented at least twice during the five year monitoring period, during separate monitoring years. These events will be documented utilizing two (2) crest-stage stream gages installed on the project reaches and by photographic evidence after bankfull flows in the stream channels,. The locations of the crest-stage stream gages are shown on the As-Built Plan Sheets in **Section 6.0**. In the event two bankfull events do not occur during the five-year monitoring period, consultations with the U.S. Army Corps of Engineers, the Division of Water Quality and the resource agencies will be coordinated to determine if further monitoring is necessary to demonstrate success criteria have been achieved.

3.2 Planted Woody Vegetation Monitoring

Woody vegetation planted along the streams will be monitored for five consecutive years. Per mitigations between the provider and EEP a total of 10 ten by ten meter square plots (six along Silver Creek and four along UT-A) have been permanently established. Corner markers were permanently installed and one corner surveyed for future use. The species, density of living stems, and the cause of mortality if identifiable will be recorded for all planted woody species within each plot. Vegetation will be sampled annually and reported every year along with the data collected during the physical monitoring of the channel. The focus of the vegetative monitoring will be a stem count on planted individuals in the tree and shrub stratum, although percent cover of the plot will also be recorded and documented via photographs taken of each plot. Vegetative problem areas along the project area will be identified, mapped, and documented via photographs. Vegetation monitoring will occur between the months of September and October.

3.3 Performance Standards

The performance standards for the restoration project are those mandated in the multi-agency *Stream Mitigation Guidelines* (USACE Wilmington District, et al., April 2003). Performance goals for the site are:

- Minimal or negligible development of instream bar deposits.
- Minimal or negligible change in channel pattern, profile and dimension in comparison to As-Built conditions. Adjustments may occur and some may be indicative of increasing stability, such as moderate reductions in width/depth ratios as a result of slight channel narrowing and natural sorting and shaping of bed materials and features
- Maintenance of floodplain connectivity (only reductions or very small increases will be considered acceptable).
- Target density of 320 stems per acre after 3 years and 260 stems per acre after 5 years for planted woody vegetation (represents 80% survival after 5 years).

Subsequent monitoring reports will address the attainment of performance goals. If goals are not be attained, then the monitoring reports will document any remedial actions taken during the monitoring period and the success of these actions.

3.4 Additional Monitoring for DWQ

In addition to the monitoring described in the previous sections, additional monitoring has been required by the NC DWQ under the Section 401 permit issued for the project on May 25, 2007. The 401 permit conditions require monitoring data collection related to bank stability and success of vegetative plantings installed along Unnamed UT-B and UT-C, which were incidentally impacted during restoration construction along Silver Creek. Portions of these tributary channels are included in this Mitigation Plan under the category of EEP preservation credit. This additional monitoring data will be collected and summarized in the monitoring reports for Silver Creek and UT-A and will be provided to the DWQ Asheville District office at the same time it is submitted to the EEP for review.

4.0 MAINTENANCE AND CONTINGENCY PLANS

Adaptive management is a systematic process for developing knowledge and continually improving project development by learning from previous projects and their performance outcomes (River Institute, 2004). This project is large in scope and entails many new applications of natural stream channel design methodologies, making an adaptive management approach essential to the success of the project. Rather than following the conventional approach to construction projects where a plan is developed and closely constructed in a rigid and structured format, we will employ a adaptive management strategy in the truest sense. Essentially, we have initiated the initial restoration of the Silver Creek Mainstem and UT-A in the context of the data, methodologies and technology currently available. As the project is monitored, we will collect data to verify the streams are evolving in the direction of increased stability and biological diversity. As the data are collected and evaluated, the knowledge gained will be directly integrated into the management and maintenance of the project throughout the monitoring period.

5.0 REFERENCES

Andrews, E.D. 1984. <u>Bed-material Entrainment and Hydraulic Geometry of Gravel-Bed Rivers in</u> <u>Colorado</u>, Geological Society of America, Bulletin 95, 371-378.

Fullagar, P.D., and Odom, A.L. 1973. <u>Geochronology of Precambrian Gneisses in the Blue Ridge</u> <u>Province of Northwestern North Carolina and Adjacent Parts of Virginia and Tennessee</u>, Geological Society America Bulletin, v. 84, p. 3065-3079.

Lee, Michael T. et al. <u>CVS-EEP Protocol for Recording Vegetation Version 4.0</u>, Level 1-2 Plot <u>Sampling Only</u>, NC EEP Website: www.nceep.net/business/monitoring/veg/cvs-eep-manual-v4_lev1-2.pdf. 2006

NCDENR, 2006. <u>Content, Format and Data Requirements for EEP Monitoring Reports, Version 1.2</u> (11/16/06). NC EEP Website:

http://www.nceep.net/business/monitoring/Monitoring_report_web/pdfs/NCEEP_Monitoring_Report _Template_Ver_1_1%20_09_16_05.pdf

Leopold, L.B., 1994. <u>A View of the River</u>, Harvard University Press, Cambridge, MA.

Leopold, L.B., Wolman, M.G., and Miller, J.B. 1964. <u>Fluvial Processes in Geomorphology</u>, W.H. Freeman, San Francisco, CA.

Pfankuch, D.J., 1975. <u>Stream Reach Inventory and Channel Stability Evaluation</u>, USDA Forest Service, R1-75-002. Government Printing Office #696-260/200, Washington, D.C., 26 pp.

River Institute, Center for Applied River Science, 2004.

Rosgen, D.L., 2006, <u>River Restoration and Natural Channel Design Course Field Manual</u>, Wildland Hydrology, Inc., Fort Collins, CO.

Rosgen, D.L. and Silvey, H.L. 2005. <u>The Reference Reach Field Book, Second Edition</u>, Wildland Hydrology, Inc., Fort Collins, CO.

Rosgen, D.L. 1998. <u>The Reference Reach – A Blueprint for Natural Channel Design</u>, ASCE Conference on River Restoration in Denver Colorado – March 1988, Reston, VA.

Rosgen, D.L. and Silvey, H.L. 1998. <u>Field Guide for Stream Classification, Second Edition</u>, Wildland Hydrology, Pagosa Springs, CO.

Rosgen, D.L. 1997. <u>A Geomorphological Approach to Restoration of Incised Rivers</u>, Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision, Denver CO.

Rosgen, D.L., 1996. Applied River Morphology, Wildland Hydrology Books, Pagosa Springs, CO.

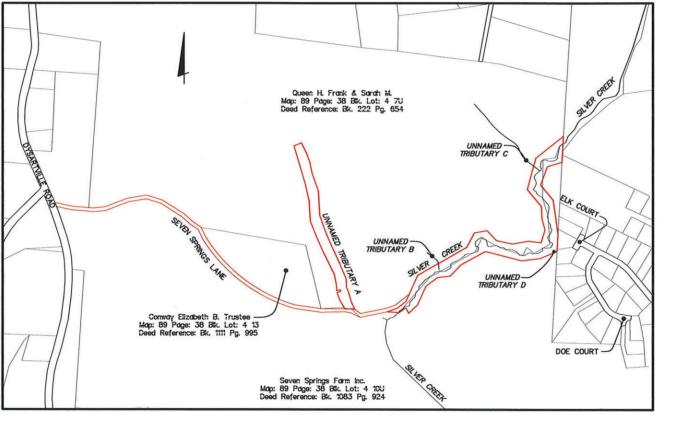
Schafale, Michael P. and Weakley, Alan S. 1990. <u>Classification of the Natural Communities of North</u> <u>Carolina Third Approximation</u>, North Carolina Department of the Environment, Health and Natural Resource

Schumm, S.A., Harvey, M.D., and Watson, C.C. 1984.Incised Channels: Morphology, Dynamics and
Publication,Control,WaterResourcePublication,Littleton,CO.

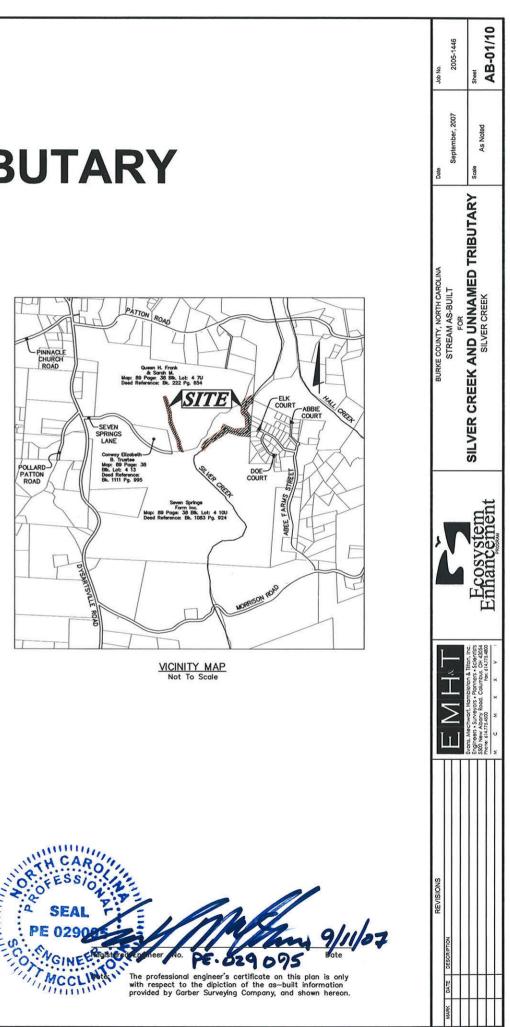
Shields, A. 1936. <u>Application of Similarity Principles and Turbulence Research to Bedload</u> <u>Movement</u>, Mitt. Preuss. Verschsanst., Berlin. Wasserbau Schiffbau. In W.P. Ott and J.C. Uchelen (translators), California Institute of Technology, Pasadena, CA. Report No. 167; 43 p.

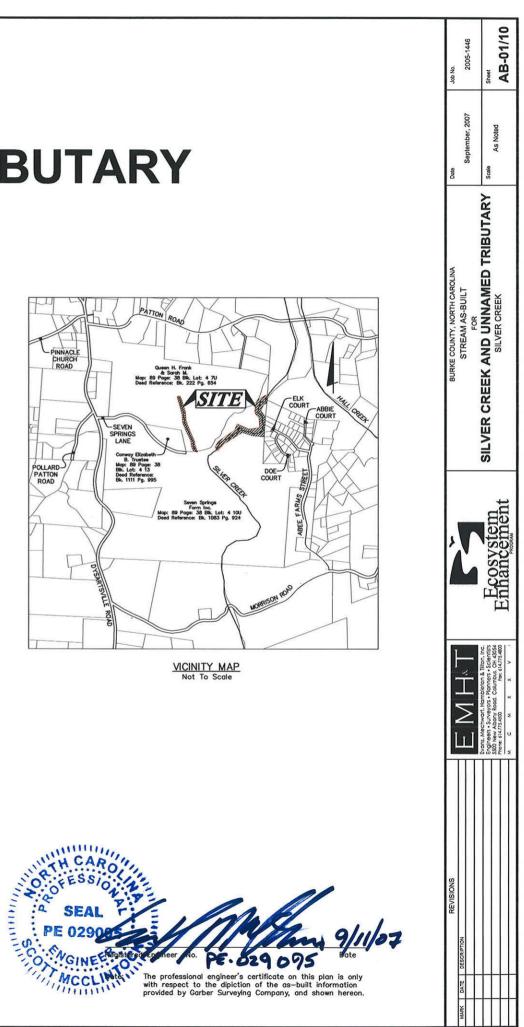
USACE, et al. April 2003. <u>Stream Mitigation Guidelines</u>, U.S. Army Corps of Engineers – Wilmington District, U.S. Environmental Protection Agency Region 4, North Carolina Wildlife Resources Commission, North Carolina Division of Water Quality, USDA Natural Resources Conservation Service, Raleigh, NC.

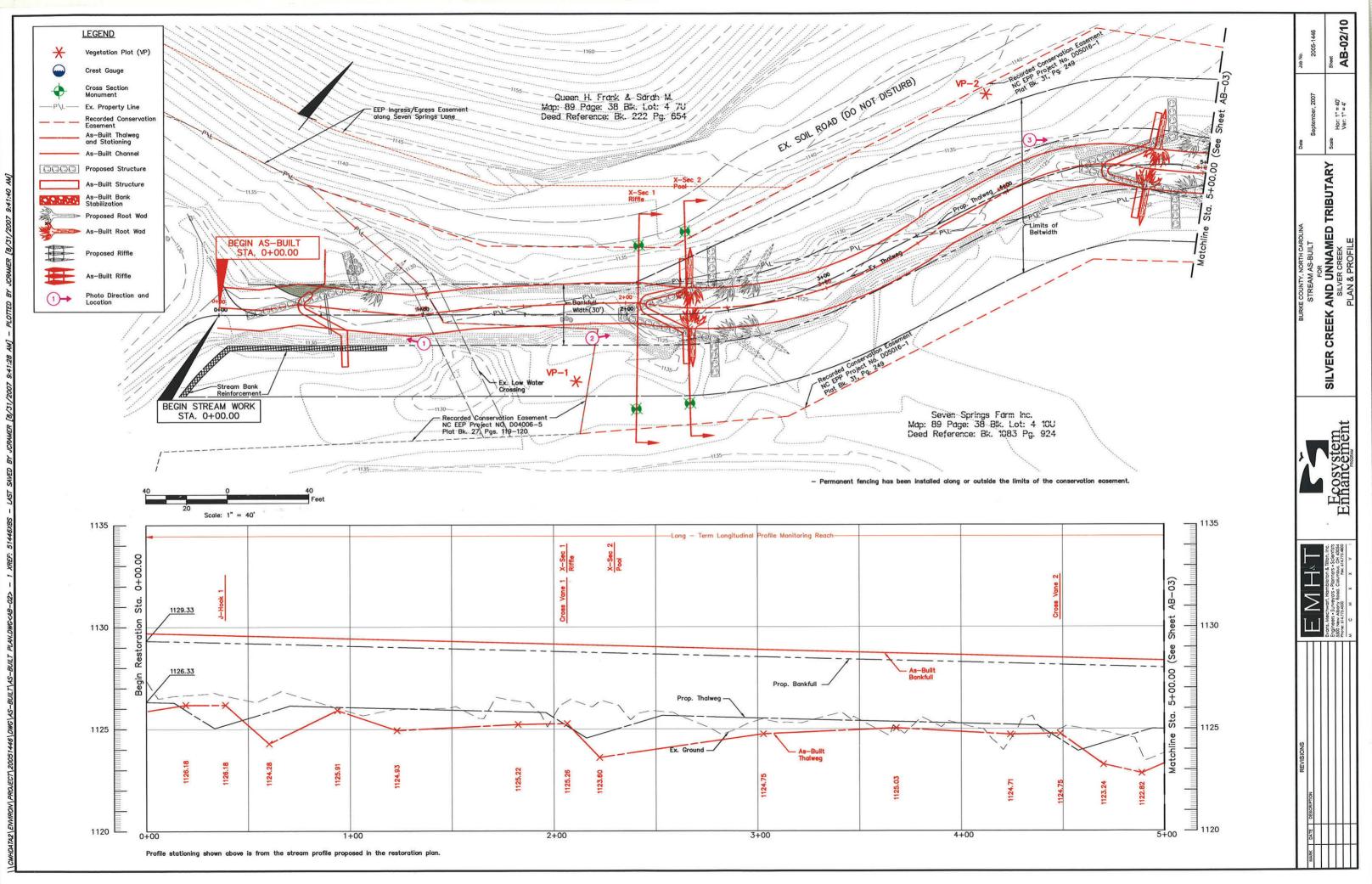
U.S. Department of Agriculture, Forest Service. 1994. <u>Stream Channel Reference Sites: An Illustrated</u> <u>Guide to Field Technique</u>, General Technical Report RM-245, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.

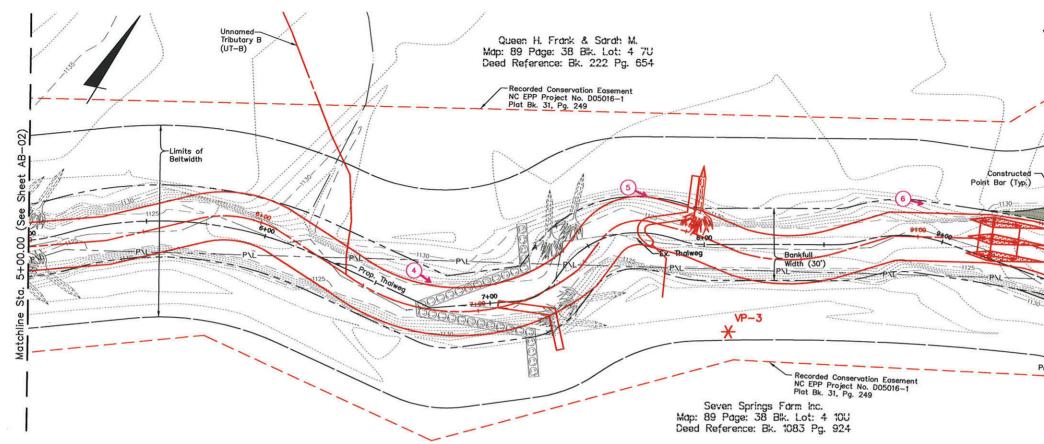

U.S. Geological Survey. 2001. <u>National Land Cover Dataset</u>. Available for download at: http://www.mrlc.gov/mrlc2k_nlcd.asp.

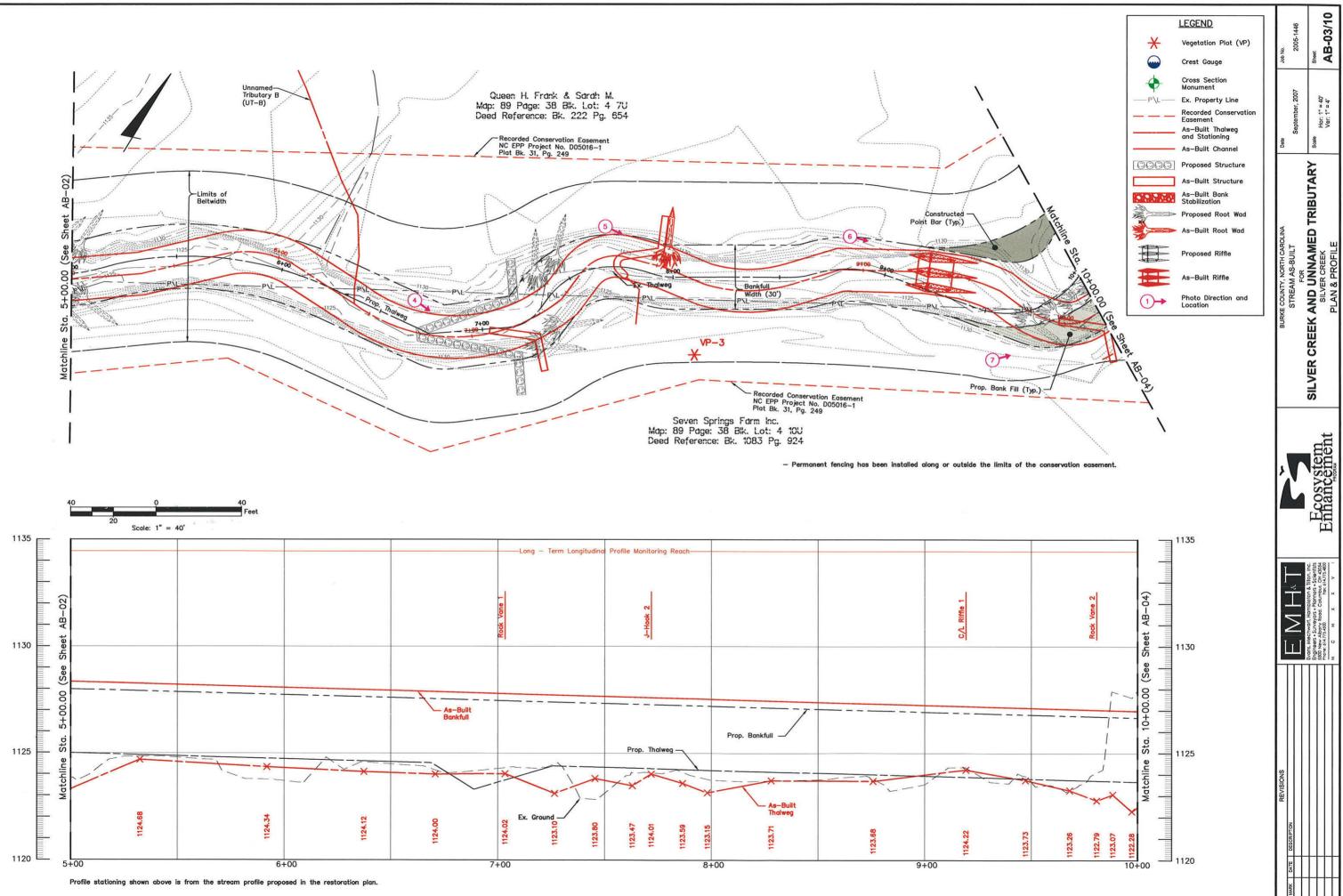
Williams, G.P. and Rosgen, D.L., 1989. <u>Measured Total Sediment Loads (Suspended Loads and Bedloads) for 93 United States Streams</u>, U.S. Geological Survey Open File Report 89-67, Denver, CO, 128 pp.

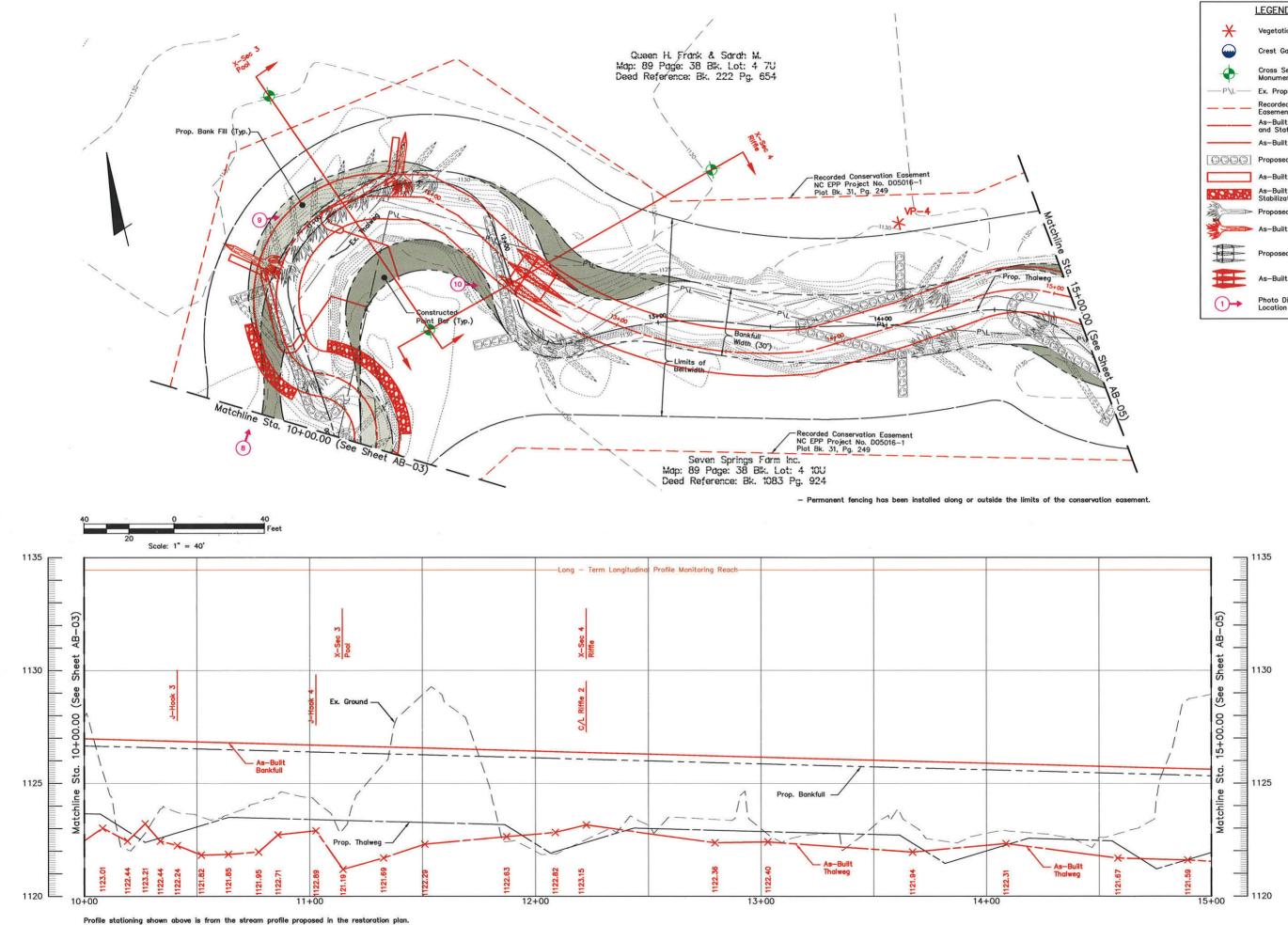

Wolman, M.G., 1954. <u>A Method of Sampling Course River-Bed Material</u>, Transactions of American Geophysical Union 35: 951-956.

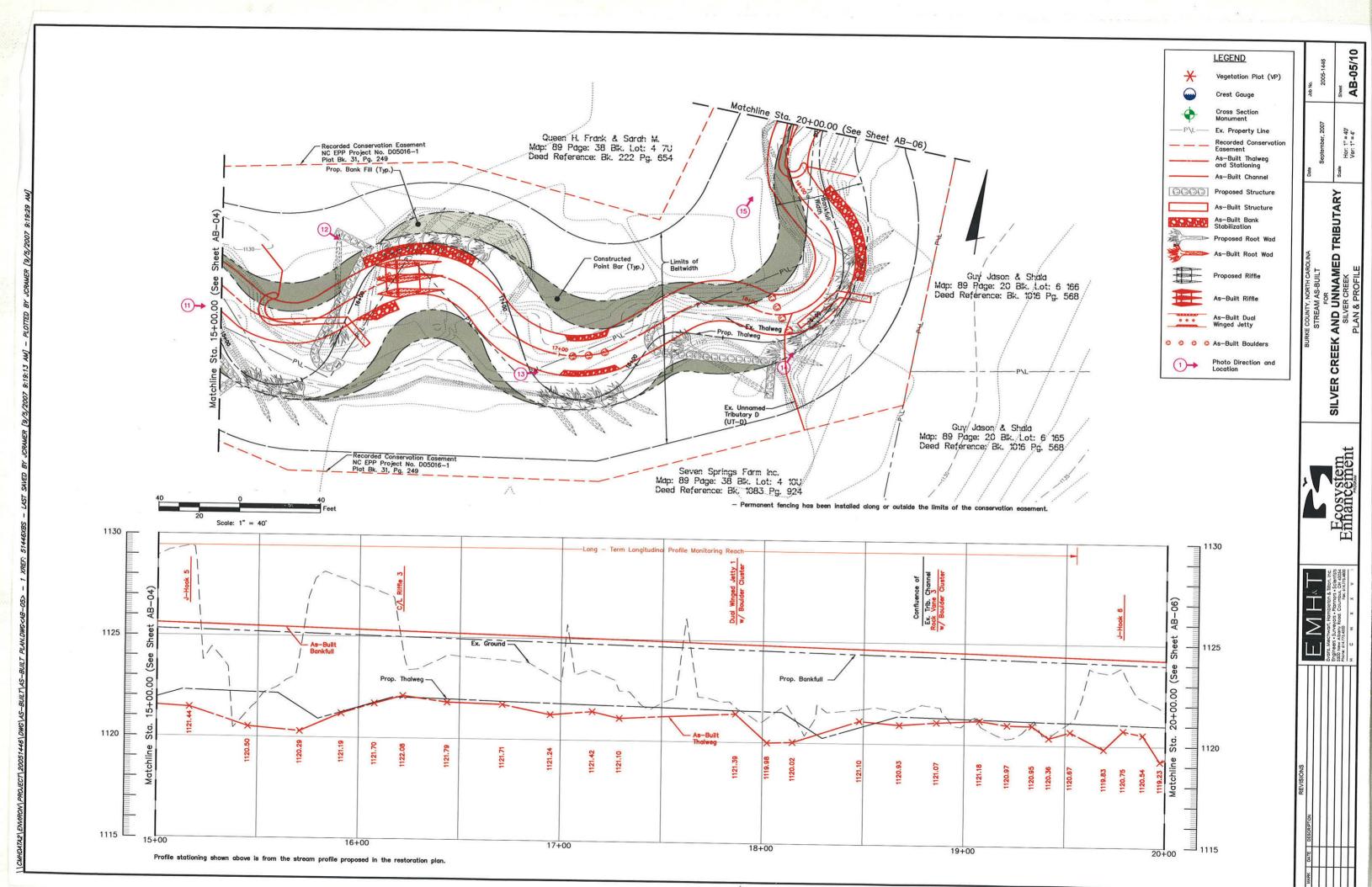

6.0 As-Built Plan Sheets

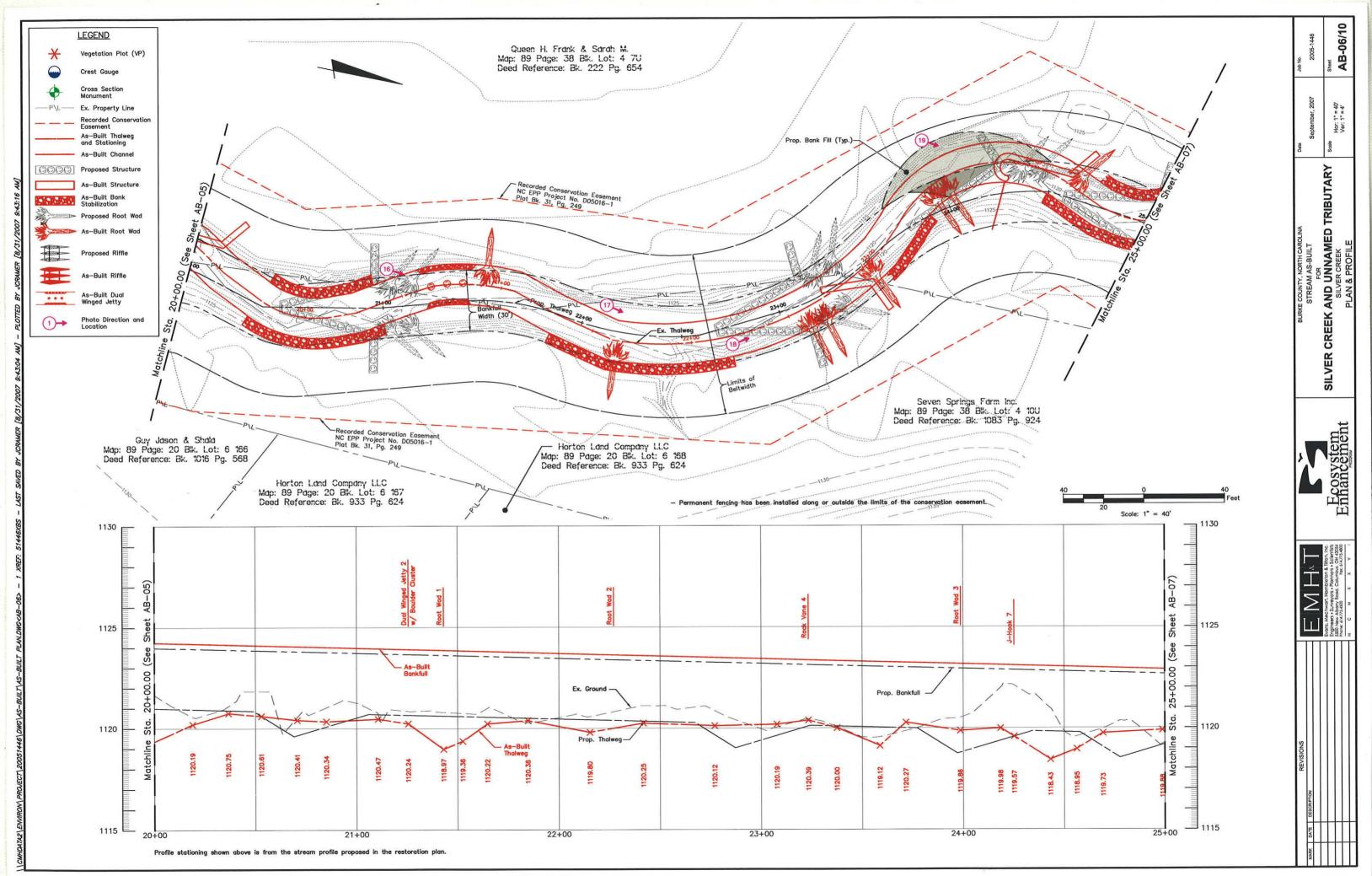

BURKE COUNTY, NORTH CAROLINA STREAM AS-BUILT FOR **SILVER CREEK AND UNNAMED TRIBUTARY** 2007

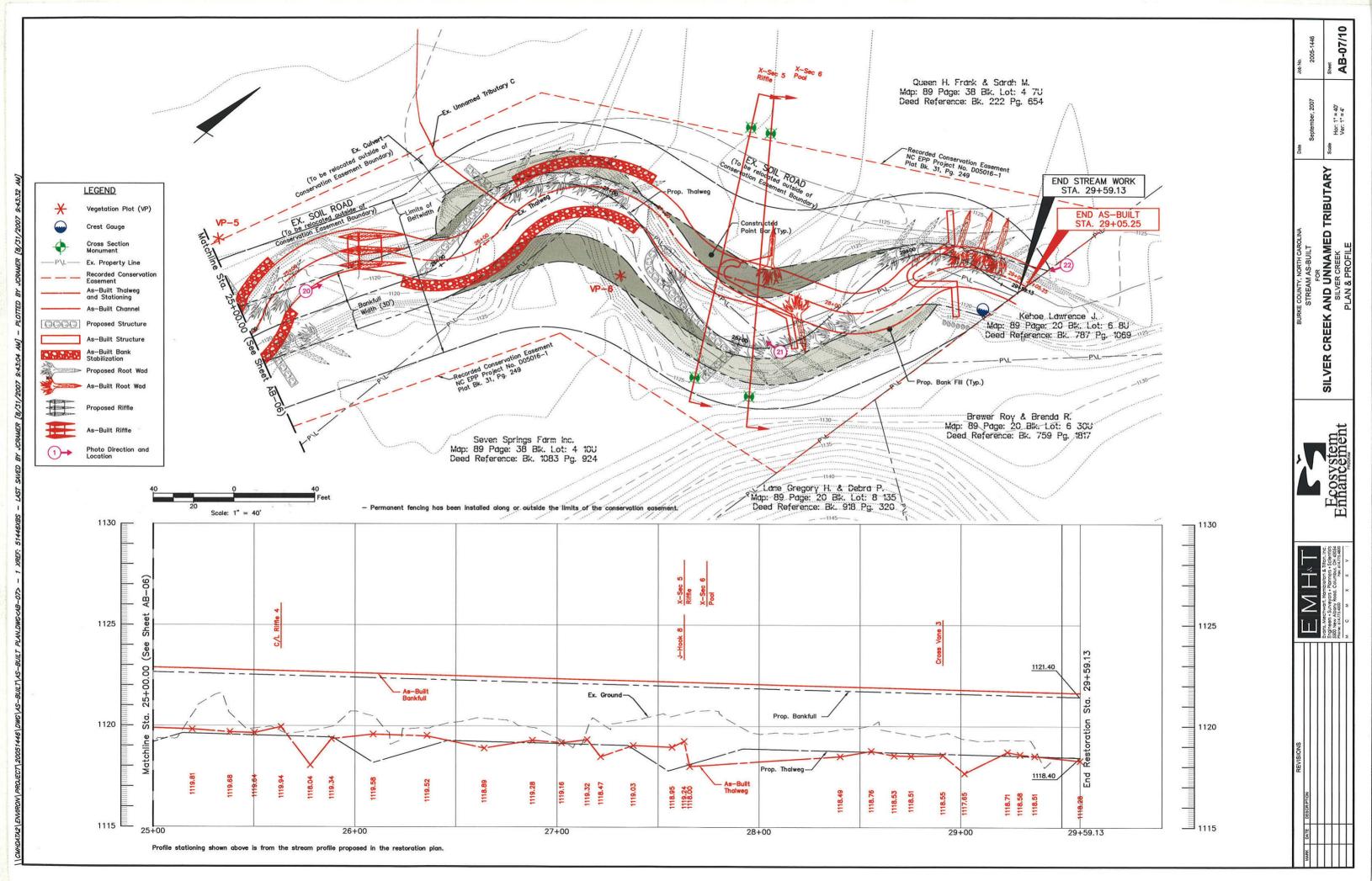


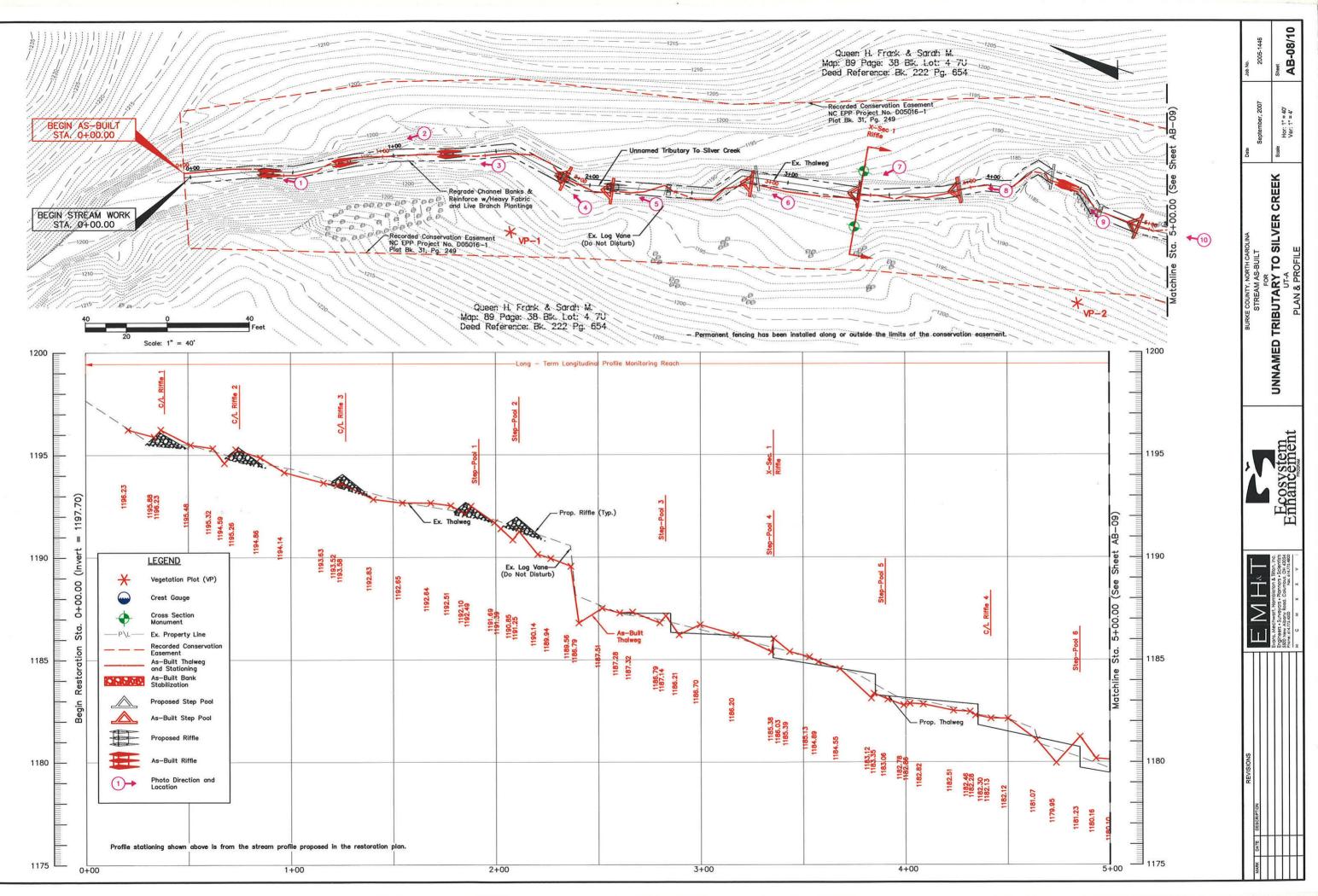

LOCATION MAP Scale: 1"=400'

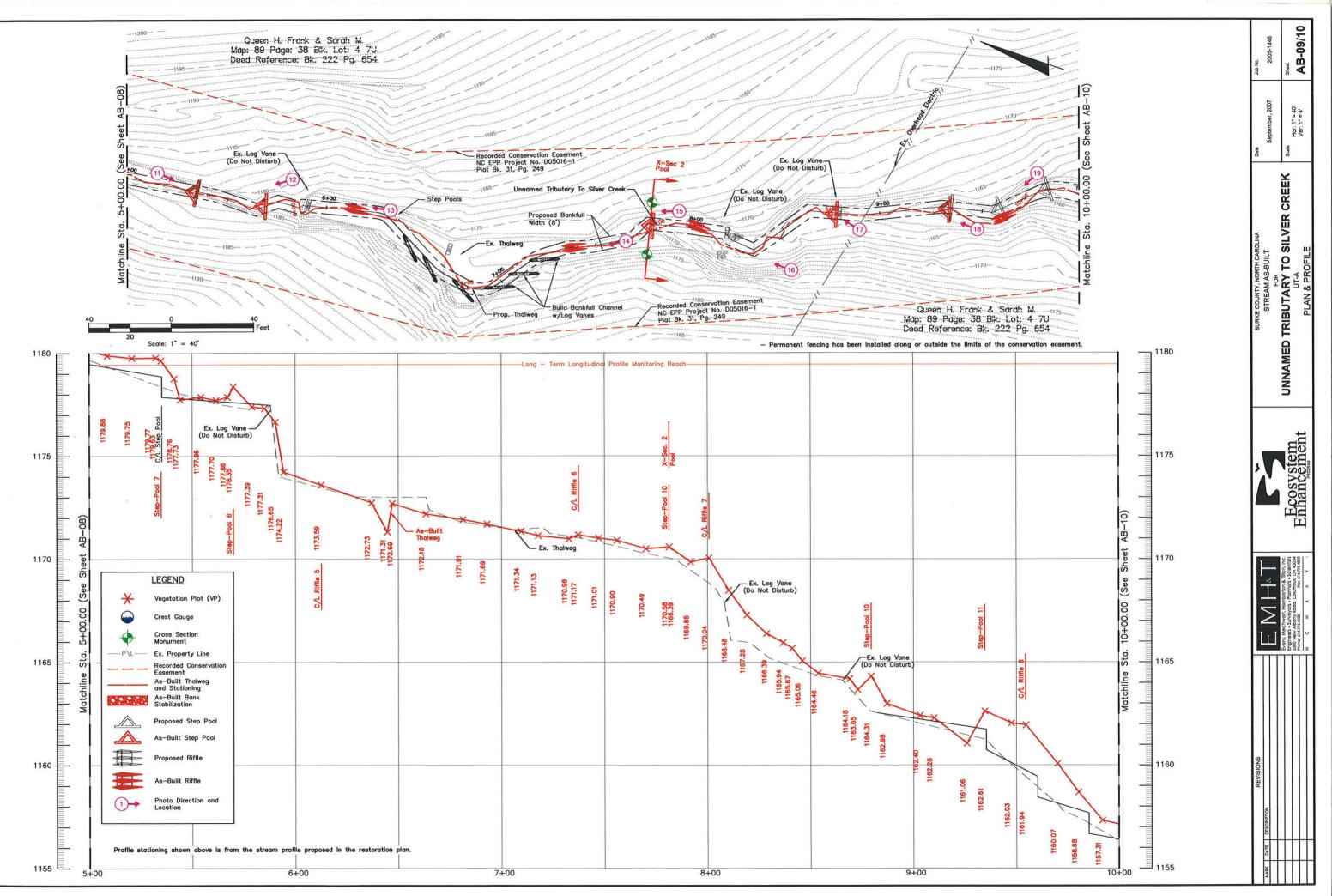


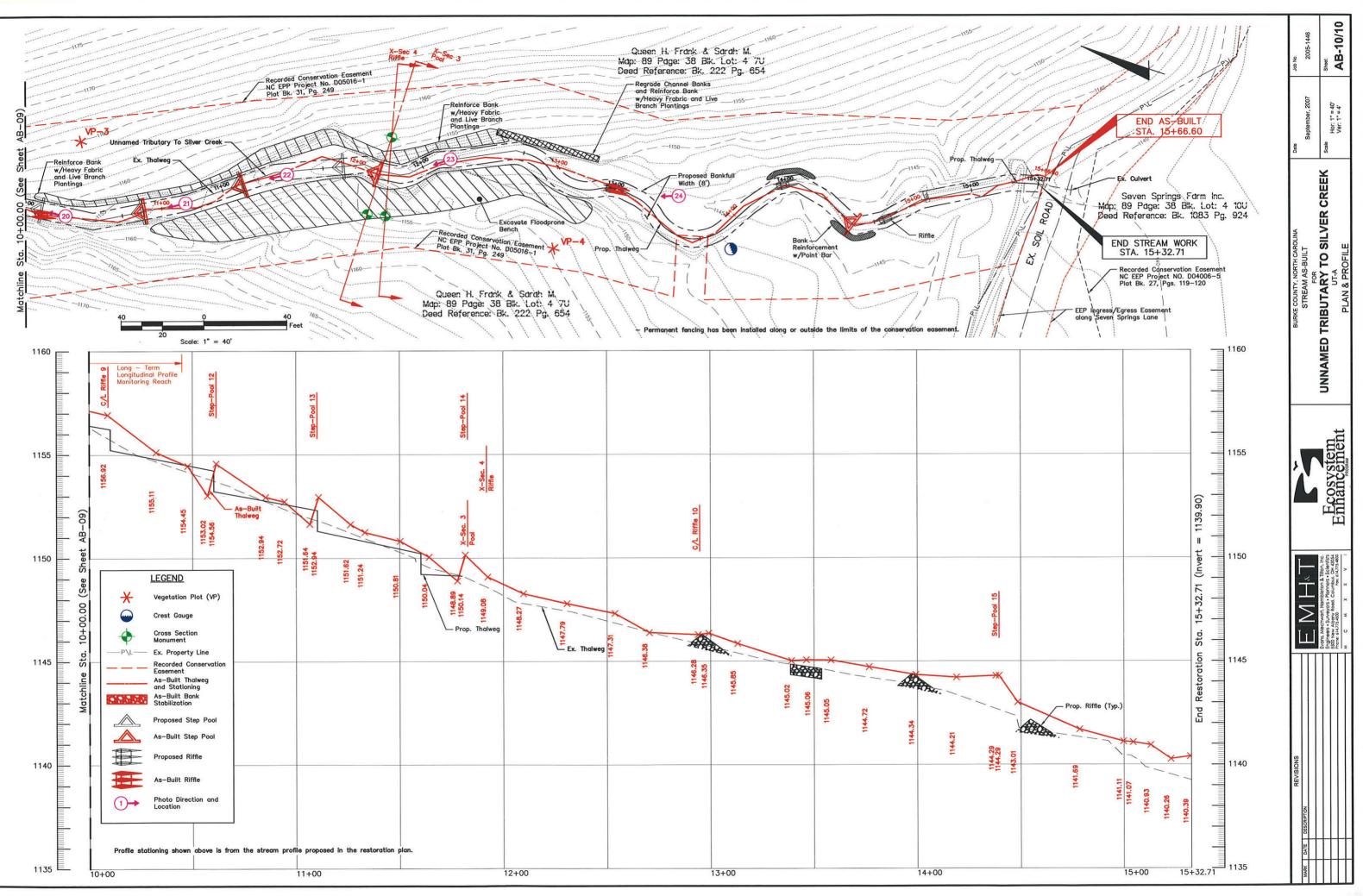


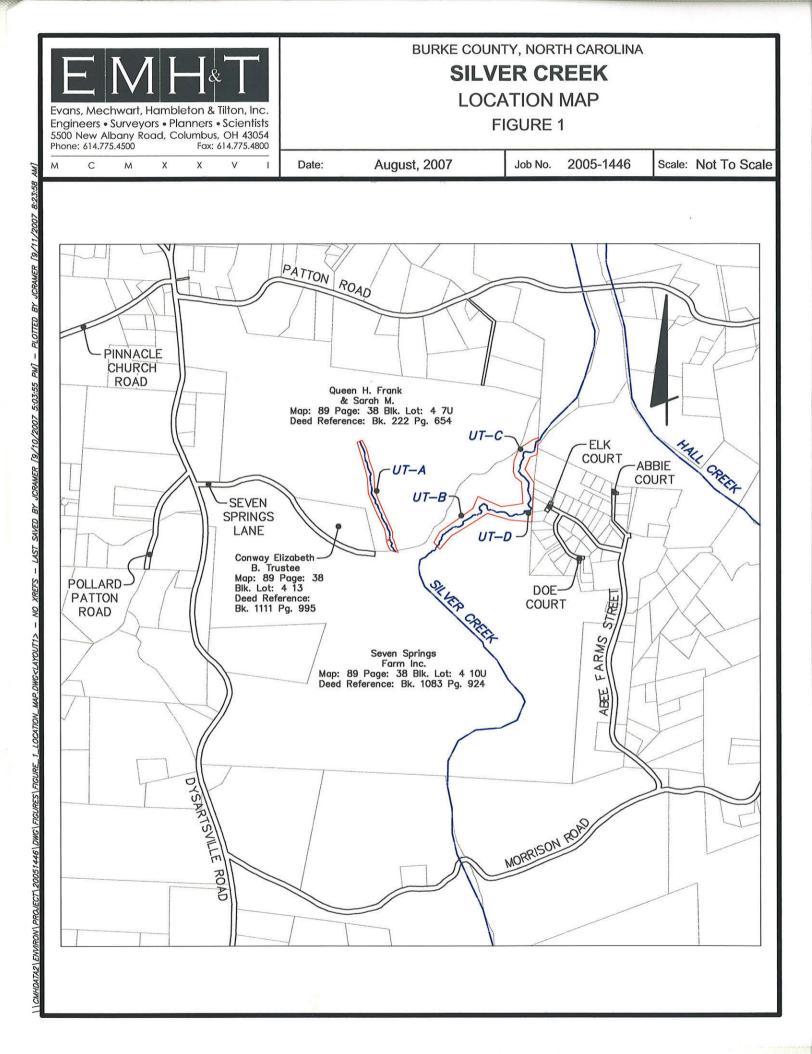


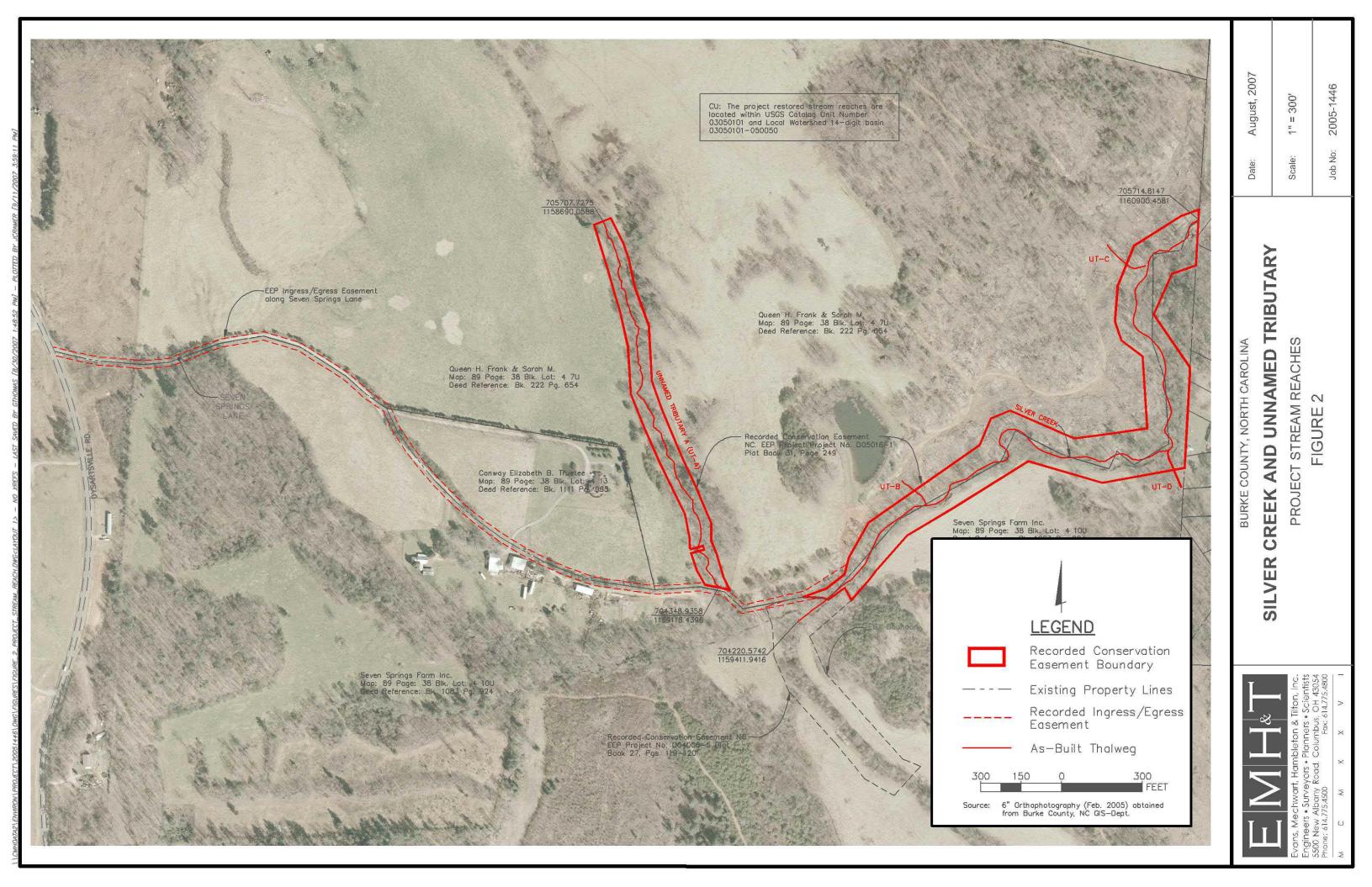


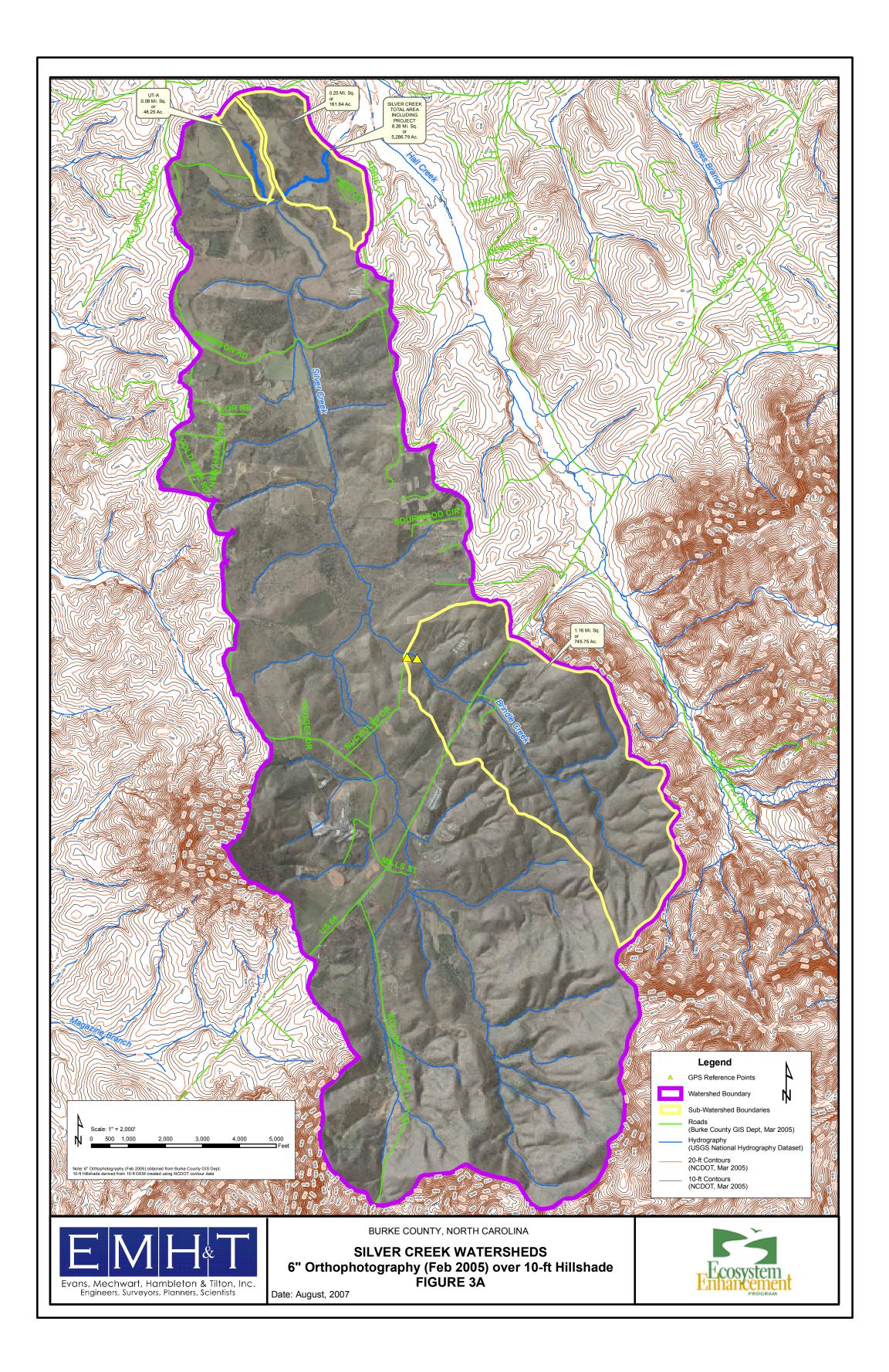

LEGEND Vegetation Plot (VP) Crest Gauge Cross Section Monument -P\L Ex. Property Line Recorded Conservatior Easement As-Built Thalweg and Stationing As-Built Channel Proposed Structure As-Built Structure As-Built Bank Stabilization Proposed Root Wad As-Built Root Wad Proposed Riffle As-Built Riffle Photo Direction and Location










and the second se

7.0 Figures

Mitigation Plan – Silver Creek Restoration

Appendix A Silver Creek Mainstem and UT-A As-Built Photographic Documentation

Photograph No. 1- J-Hook 1 Looking Upstream

Photograph No. 3- Cross Vane 2 Looking Downstream

Photograph No. 5- J-Hook 2 Looking Downstream

Photograph No. 2- Cross Vane 1 Looking Downstream

Photograph No. 4- Rock Vane 1 Looking Downstream

Photograph No. 6- Riffle 1 Looking Downstream

Photograph No. 7- Rock Vane 2 Looking Downstream

Photograph No. 9- J-Hook 4 Looking Downstream

Photograph No. 11- J-Hook 5 Looking Downstream

Photograph No. 8- J-Hook 3 Looking Downstream

Photograph No. 10- Riffle 2 Looking Downstream

Photograph No. 12- Riffle 3 Looking Downstream

Photograph No. 13- Dual Winged Jetty With Boulder Cluster Looking Downstream

Photograph No. 15- J-Hook 6 Looking Downstream

Photograph No. 17- Root Wad 2 Looking Downstream

Photograph No. 14- Rock Vane 3 With Boulder Cluster Looking Downstream

Photograph No. 16- Dual Winged Jetty With Boulder Cluster and Root Wad 1 Looking Downstream

Photograph No. 18- Rock Vane 4 and Root Wad 3 Looking Downstream

Photograph No. 19- J-Hook 7 Looking Downstream

Photograph No. 20- Riffle 4 Looking Downstream

Photograph No. 21- J- Hook 8 Looking Upstream

Photograph No. 22- Cross Vane 3 Looking Upstream

Photograph No. 1- Riffle 1 Looking Upstream

Photograph No. 3- Riffle 3 Looking Upstream

Photograph No. 5- Step Pool 2 Looking Upstream

Photograph No. 2- Riffle 2 Looking Upstream

Photograph No. 4- Step Pool 1 Looking Upstream

Photograph No. 6- Step Pool 3 Looking Upstream

Photograph No. 7- Step Pool 4 Looking Upstream

Photograph No. 9- Riffle 4 Looking Upstream

Photograph No. 11- Step Pool 7 Looking Downstream

Photograph No. 8- Step Pool 5 Looking Upstream

Photograph No. 10- Step Pool 6 Looking Upstream

Photograph No. 12- Step Pool 8 Looking Upstream

Photograph No. 13- Riffle 5 Looking Upstream

Photograph No. 15- Step Pool 9 Looking Upstream

Photograph No. 17- Step Pool 10 Looking Upstream

Photograph No. 14- Riffle 6 Looking Upstream

Photograph No. 16- Riffle 7 Looking Upstream

Photograph No. 18- Step Pool 11 Looking Upstream

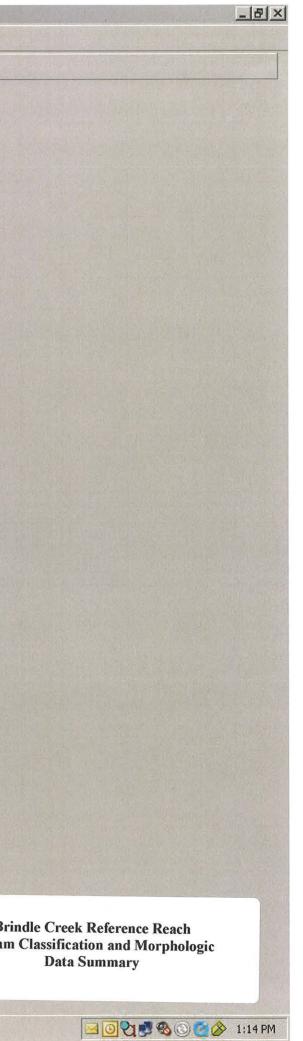
Photograph No. 19- Riffle 8 Looking Upstream

Photograph No. 21- Step Pool 12 Looking Upstream

Photograph No. 23- Step Pool 14 Looking Upstream

Photograph No. 20- Riffle 9 Looking Upstream

Photograph No. 22- Step Pool 13 Looking Upstream


Photograph No. 24- Riffle 10 Looking Upstream

Mitigation Plan – Silver Creek Restoration

Appendix B Brindle Creek Reference Reach Summary Data

e 💤 Reach 1 (Reference Reach)	file P ₅₀ D50 Freset Sliders Extra Info	
Keach T (Herefence Reach) Survey Data Cross Sections Riffle Section 0+22 Pool Section 3+20 Banks Profiles Ref Reach Long Pro Particles Riffle X-S 0+22 Pool X-S 3+20 Composite Classification Ratios Pfankuch BEHI SVAP RBP Designs NCD Vanes Notes Reach 1 (Abandoned Oxbow - A Reach 3 (Over Tightened Mean Reach 3 (Over Tightened Mean Reach 3 (Over Tightened Mean Reach 5 (Unnamed Tributary) As-Built UT-A As-Built UT-A As-Built UT-A As-Built UT-A	 Pebble Counts Composite D50 = 27.73 mm Coation and Date of Survey State North Carolina County Burke County Burke Latitude 35.61861 Longitude 81.81694 Date 01/13/06 Single Thread Multiple Channels Width (ft) 24.02 Mean Depth (ft) 1.28 Maximum Depth (ft) 1.72 Flood-Prone Width (ft) 232 Channel Materials D50 (mm) 38.5 Water Surface Slope (ft/ft) 0.01149 Sinuosity 1.2 Discharge (cfs) 98.16 Velocity (fps) 3.19 Cross Sectional Area (sg ft) 3.77 Entrenchment Ratio 9.66 Width to Depth Ratio 18.77 This Reach is a Reference Reach 	

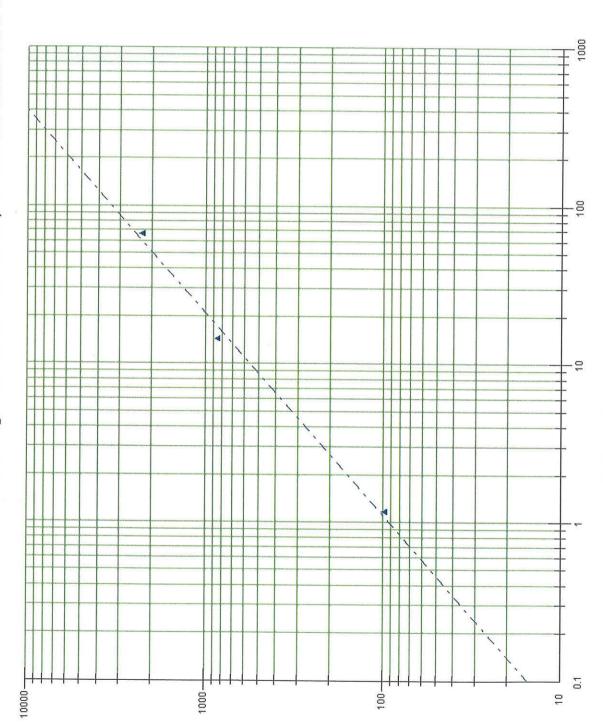
趙 Start 🛛 🖪 🏉 💽

• • •

Brindle Creek Reference Reach Stream Classification and Morphologic Data Summary

	Silver Creek & Tr	ib Restoration, Re	ach - Reach 1 (Reference	Reach)			
Basin NAME:	Catawba River		Drainage AREA:	742.4	acre	1.16 1	ni ²
Location: Brindle	Creek of Silver Cree	ek, Burke County,	North Carolina				
Twp:	Rge:	Sec:	Qtr:	Lat:	35.6186	Long:	81.81
Observers:	Miles F. Hebert, F	'E and Warren E. J	Knotts, PG		Date:	1	/13/200
Bankfull WII WIDTH of the st	DTH (W _{bkf}) ream channel, at bank	full stage elevatio	n, in a riffle section.	<u></u>	<u> </u>	24.02	Feet
Mean DEPTH Mean DEPTH of (d _{bkf} =A _{bkf} /W _{bkf})		ross-section, at ba	nkfull stage elevation, in	a riffle se		1.28	Feet
	ss Section Area (ann channel cross-sec	10 11 10	tage elevation, in a riffle	section.		30.77	Feet ²
	PTH RATIO (W I divided by bankfull		a riffle section.			18.77	Ft/Ft
an a	en en anter al anter a ser	endersteller geseinder um geseinseren	ender eine andere for die dat verste einen ei	a starrater		10000000000000	an an an an the second seco
Maximum DI Maximum depth thalweg in a riffl	of the bankfull chan	nel cross-section, c	or elevation between the t	ankfull st	age and	1.72	Feet
Maximum depth thalweg in a riffl Flood-Prone The stage/elevati	of the bankfull chann e section. Area WIDTH (V on at which flood-pro-	V _{fpa})	or elevation between the b s determined in a riffle so	<u>na posta a contrato</u>	- 	<u>ia secto te constructore de constructore de constructore de constructore de constructore de constructore de con</u>	Feet Feet
Maximum depth thalweg in a riffl Flood-Prone The stage/elevati maximum DEPT Entrenchmer	of the bankfull channe e section. Area WIDTH (V on at which flood-pro H, or (2 x d _{mri}) at RATIO (ER)	V _{fpa}) one area WIDTH i		ection at t	wice	232	
Maximum depth thalweg in a riffle Flood-Prone The stage/elevati maximum DEPT Entrenchmer The ratio of floor section. Channel Mat The 50th percent	of the bankfull chann e section. Area WIDTH (V on at which flood-pro H, or (2 x d _{mri}) at RATIO (ER) d-prone area WIDTH erials (Particle S	V _{fpa}) one area WIDTH i divided by bankf ize Index) D5(n a pebble count fr	s determincd in a riffle so ull channel WIDTH (W _{fpr}	ection at tr /W _{bk(}) in :	wice a riffle	232	Feet Ft/Ft
Maximum depth thalweg in a riffle Flood-Prone The stage/elevati maximum DEPT Entrenchmer The ratio of floor section. Channel Mat The 50th percent representing the Water Surfac Average water su	of the bankfull channe e section. Area WIDTH (Won at which flood-pro- H, or (2 x d _{mri}) at RATIO (ER) d-prone area WIDTH erials (Particle S ille, or less than, from median or dominant ce SLOPE (S)	V _{fpa}) one area WIDTH i divided by bankf Size Index) D50 n a pebble count fr particle size.	s determined in a riffle so ull channel WIDTH (W _{fpr}) equency distribution of c ame position of bed featu	cction at tr /W _{bk} () in a hannel pa	wice a riffle rticles	<u>232</u> 9.66	Feet Ft/Ft mm
Maximum depth thalweg in a riffle Flood-Prone The stage/elevati maximum DEPT Entrenchmer The ratio of floor section. Channel Mat The 50th percent representing the Water Surfac Average water st over two meanded Channel SIN Sinuosity: an inc	of the bankfull chann e section. Area WIDTH (V on at which flood-pro- H, or (2 x d _{mri}) at RATIO (ER) d-prone area WIDTH erials (Particle S ille, or less than, from median or dominant ce SLOPE (S) arface slope as measu ar wave lengths. This UOSITY (K)	V _{fpa}) one area WIDTH i divided by bankf ize Index) D50 n a pebble count fr particle size. ured between the sa is similar to avera	s determined in a riffle so ull channel WIDTH (W _{fpr}) equency distribution of c ame position of bed featu age bankfull slope.	ection at tr /W _{bk} () in a hannel pa res in the	wice a riffle rticles profile	232 9.66 38.5	Feet Ft/Ft

Brindle Creek Reference Reach Stream Classification and Morphologic Data Summary


		、									
	Mean Riffle Depth (d _{bkl})	1.28 feet	Mean Riffl	e Width (W _{bkf})	24.02 f	et Mean	Riffle A	Area (A _b	ıkt)	30.77	ſeet ²
E	Mean Pool Depth (d _{bkfp})	2.33 feet	Mean Pool	Width (W _{bkfp})	26.97 f	eet Mcan	Pool Aı	rca (A _{bk}	_{fp})	62.77	fect ²
Channel Dimension	Ratio Mean Pool Depth/Mean Riffle Depth	I.820 dbkfp/ dbkf	Ratio Pool Width	Width/Riffle		V _{bkfp} / Ratio V _{bkf} Riffle	Pool Ar Arca	rea/			A _{bkfp} / A _{bkf}
ei D	Max Riffle Depth (d _{mrif})	2.41 feet	Max Pool I	Depth (d _{mpool})	3.76 f	cet Max r	iffle deț	oth/Mea	n riffle	depth	1.883
hanr	Max pool depth/Mean riffle	e depth 2.938]			Point	Bar Slo	pe		0.0)1
U I	Streamflow: Estimated Me	an Velocity at	t Bankfull St	age (u _{bk})	3.19 fi	/s Estim	ation M	ethod	Manning	g's Equa	tion
	Streamflow: Estimated Dis	charge at Ban	klull Stage (Q _{bk})	98.16 c	fs Drain	age Are	a	5.4 5.4 5 <u>7</u> 572	1.16	mi ²
	Geometry	Ave Min	Max	n		6	nation		A.110	M :	X400
E	Meander Length (Lm)	the second second second	115.7 feet	Meander Le		Geometry (Lm/W _{bk})	Katios	1	Ave 4.361	Min 3.673	Max 4.816
Channel Pattern	Radius of Curvature (Rc)	17.67 12.97	24.44 feet	Radius of C	urvature/R	iffle Width	(Rc/W _b	kð	0.736	0.540	1.017
nel p	Belt Width (W _{blt})	45.22 44.17	46.5 feet	Meander W	idth Ratio	(W _{bh} /W _{bkf})			1.883	1.839	1.936
han	Individual Pool Length	17.42 11.01	31.56 feet	Pool Length	/Riffle Wi	dth			0.725	0.458	1.314
$\bigcup_{i \in \mathcal{I}}$	Pool to Pool Spacing	71.36 67.6	77.5 feet	Pool to Pool	Spacing/	Riffle Width	l		2.971	2.814	3.226
)138 ft/ft	X		(0) 1	0.01140	10/0		<u>`. (310</u>	(0)	
			1	ater Surface Sl	ope (S)	0.01149	ft/ft		ity (VS	a de la composición de	1.2
			Valley Len			294	feet		ity (SL/	ana in f	1.201
	Low Bank Height start (LBH) end		Max H Dep		}	1		ight Rat Riffle D		start end	
	Facet Slopes Ave	Min Max				Slope Ratio			Ave	Min	Max
	Tanan karakaran karak	0.0172 0.0340	an a	le Slope/Avera	ge Water S	Surface Slop	e (S _{ri} /S)	2.144	1.500	3.008
Channel Profile	Run Slope (S _{run}) 0.0211	0.0125 0.0362	ft/ft Rur	a Slope/Average	e Water St	irface Slope	(S _{run} /S))	1.838	1.088	3.150
el p		0.0010 0.009	-townson and the second	l Slope/Averag			and the second		0.372	0.086	0.824
hanr	Glide Slope (Sg) 0.0053	0.0020 0.007		le Slope/Avera	ge Water S	Surface Slop	e (S _g /S)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.460	0.173	0.655
	Feature Midpoint * Ave	Min Max				Depth Rati			Ave		Max
	Riffle Depth (d_{mrif})2.4102.202.410		an a start de traver	le Max Depth/l	ter en sen se	e e e e e e e e e e e e e e e e e e	and a second state of the			dan ayara	1.883
		1.870 2.560		Max Depth/Ri	en e						2.000
		3.760 3.760		I Max Depth/R	andresta and see		anana.eeen	<u>eleinistetetetetetetetetetetetetetetetetetete</u>	بَشْنَشْنَشْنَشْنَشْنَصْمَ	nakan ta m	2.938
	Glide Depth (d _{mg}) 2.210	1.640 2.700){feet [Glie	le Max Depth/I	Riffle Mea	n Depth (d _n	g/d _{bkf})		1.727	1.281	2.109
	Catagories Re	ach ^b R	iffle°	Bar	Indices	Reach ^b	Ri	ffle ^c	B	ar	
als	% Silt/Clay	0	0		D16	0.84	19	9.96			mm
ateria	% Sand	24	0		D35	18.64	29	9.65			mm
Channel Materials	% Gravel	63	90		D50	27.73	3	8.5			mm
ann	% Cobble	13	10		D84	58.3	6	0.2			mm
<u>မ</u> ြ	% Boulder	0	0		D95	87.11	-	77			mm
	% Bedrock	0	0		D100	179.99	1	90			mm

a. The range of "feature" mid-point maximum bankfull depths, including the minimum, maximum and average values.

(Pool depths are obtained from the deepest portion of the feature.)

b. A composite sample of materials from riffle and pool featutes taken within the designated reach.

c. Sample obtained within the "active" bed of a riffle feature at the location of the cross section.

NC Mountains C3-C4 Streams

NC Mountains C3-C4 Regional Curve - Silver Ck, N Fork Swannanoa & Mills River

Discharge (cfs)

Drainage Area (sq mi)

River Name: Silver Creek & Trib Re Reach Name: Reach 1 (Reference Rea			
Stream Type Valley Type D50(mm) C 4 VIII 38.5	Val Slop 0.0097	e BKF Q(98.16	(cfs) DA(sq mi) 1.16
Dimension Summary (DIMESIONLES	SS RATIOS	>	
Database based on the following Cr Riffle Section 0+22 Pool Section 3+20	ross Sectio	ons:	
Variable	Min	Avg	Мах
Wfpa / Wbkf Abkf Dmbkf Dbkf Wokf Pool Area / Abkf Max Pool Depth / Dbkf Mean Pool Depth / Dbkf Pool Width / Wbkf Run Area / Abkf Max Run Depth / Dbkf Mean Run Depth / Dbkf Run Width / Wbkf Glide Area / Abkf Max Glide Depth / Dbkf Mean Glide Depth / Dbkf Glide Width / Wbkf	30.77 2.41 1.28 24.02 2.03997 2.9375 1.82031 1.12281 0 1.46094 0 0	9.65862 30.77 2.41 1.28 24.02 2.03997 2.9375 1.82031 1.12281 0 1.79687 0 0 1.92969 0 0	30.77 2.41 1.28 24.02 2.03997 2.9375 1.82031 1.12281 0 2 0 0 0
Pattern Summary Variable	Min	A 1(0)	Max
Sinuosity Lm / W bkf Rc / W bkf Wblt / Wbkf (MWR) Profile Summary	3.67319 0.53997	Avg 1.2 4.36137 0.73564 1.8826	4.81557 1.01749
Data Based on the following:			
Variable	Min	Avg	Max
S riffle / S bkf (ft/ft) S pool / S bkf (ft/ft) S run / S bkf (ft/ft) S glide / S bkf (ft/ft) P - P / W bkf (ft) P length / W bkf (ft) Dmax riffle / D bkf (ft) Dmax pool / D bkf (ft) Dmax run / D bkf (ft) Dmax glide / D bkf (ft) Low Bank Ht / Dmax riff (ft)	0.17319	2.97086	0.82419 3.1497 0.65535 3.22648

Bankfull Slope (ft/ft) 0.01149 Hydraulic Summary Variable Min Avg Max

Variable	I*1 I I	Avy	max
Q bkf V bkf (fps) HR / D bkf (ft) Bkf Shear (lb/ sq ft)	0.94531	98.16 3.19 0.94531 0.87	0.94531 0.87

River Name: Silver Creek & Trib Reach Name: Reach 1 (Reference R			
Stream Type Valley Type D50(mm) C 4 VIII 38.5	Val Slo 0.0097	pe BKF Q 98.16	(cfs) DA(sq mi 1.16
Dimension Summary			
Database based on the following Riffle Section 0+22 Pool Section 3+20	Cross Secti	ons:	
Variable	Min	Avg	Мах
Floodprone Width (ft) Riffle Area (Sq ft) Max Riffle Depth (ft) Mean Riffle Depth (ft) Riffle Width (ft) Pool Area (Sq ft) Max Pool Depth (ft) Mean Pool Depth (ft) Pool Width (ft) Run Area (Sq ft) Max Run Depth (ft) Mean Run Depth (ft) Run Width (ft) Glide Area (Sq ft) Max Glide Depth (ft) Mean Glide Depth (ft) Glide Width (ft) Pattern Summary	30.77 2.41 1.28 24.02 62.77 3.76 2.33	232.0 30.77 2.41 1.28 24.02 62.77 3.76 2.33 26.97 0 2.3 0 0 2.47 0 0 0	30.77 2.41 1.28 24.02 62.77 3.76 2.33 26.97 0
Variable	Min	Avg	Мах
Sinuosity Meander Wavelength (ft) Radius of Curvature (ft) Belt Width (ft) Profile Summary	88.23 12.97 44.17	17.67	24.44
Data Based on the following:			
Variable	Min	Avg	Мах
S riffle (ft/ft) S pool (ft/ft) S run (ft/ft) S glide (ft/ft) P - P (ft) P length (ft) Dmax riffle (ft) Dmax pool (ft) Dmax glide (ft) Low Bank Ht (ft)	0.00099	71.36 17.42 2.41 3.76	0.00947 0.03619 0.00753 77.5 31.56 2.41 3.76

Bankfull Slope (ft/ft)

0.01149

Hydraulic Summary

Variable	Min	Avg	Мах
Discharge (cfs) Velocity (fps) Hyd Radius (ft) Bkf Shear (lb/ sq ft)	1.21 0.87	98.16 3.19 1.21 0.87	1.21 0.87

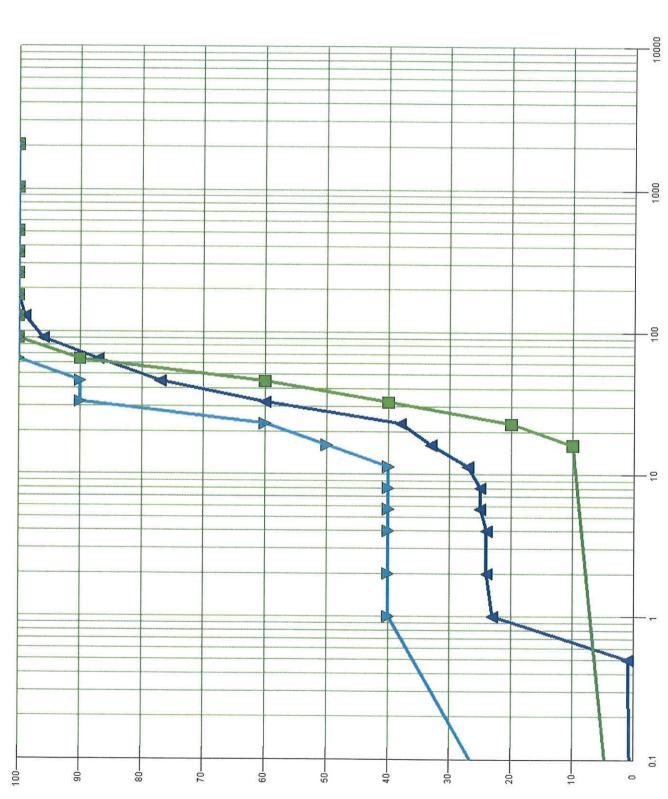
River Name: Silver Creek & Trib Restoration Reach Name: Reach 1 (Reference Reach) Survey Date: 01/13/06

Upper Bank

Landform Slope:	1
Mass Wasting:	2
Debris Jam Potential:	1
Vegetative Protection:	2
2	

Lower Bank

Channel Capacity:	0
Bank Rock Content:	1
Obstructions to Flow:	1
Cutting:	3
Deposition:	3


Channel Bottom

Rock Angularity:0Brightness:0Consolidation of Particles:1Bottom Size Distribution:3Scouring and Deposition:5Aquatic Vegetation:1

Channel Stability Evaluation

Sediment Supply:	Moderate
Stream Bed Stability:	Stable
W/D Condition:	Normal
Stream Type:	C4
Rating - 24	
Condition - Good	

<u> Composite (PC)</u>

Riffle X-S 0+22 (PC)

V Pool X-S 3+20 (PC)

Particle Size (mm)

Percent Finer

River Name: Reach Name: Sample Name: Survey Date:	Silver Creek Reach 1 (Refe Composite 01/13/06	& Trib Rest rence Reach	oration)
Size (mm)	TOT #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 1.00\\ 22.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ 2.00\\ 6.00\\ 5.00\\ 22.00\\ 17.00\\ 10.00\\ 9.00\\ 3.00\\ 1.00\\ 0$	0.00 0.00 1.00 23.00 24.00 24.00 25.00 25.00 27.00 33.00 38.00 60.00 77.00 87.00 96.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.84 18.64 27.73 58.3 87.11 179.99 0 24 63 13 0 0		

٥

Total Particles = 100.

1 Classification Form		ne un	
	T CIUSSITICUTI I.	n (Jacentination Hoi	•

roject Name: S; lyer Creek & UT WQ Project Number: D0 5016 -1 River Basin: Catawbar Rustoration Plan Nearest Named Stream:

> County: Burke Evaluator:

Reference Leach Brindle Creek WARKEN KNOTTS, PE

Latitude: 35°37'07" N Signature: Marrey & South

llso, if in the best professional judgement of the evaluator, the feature is a man-made ditch and not a modified natural stream ating system should not be used. 01/13/2006 USGS QUAD: Glen Alpine Longitude & W Location/Directions: Goldmin Tech PLEASE NOTE: If evaluator and landowner agree that the feature is a man-made ditch, then use of this form is not necessary. TO KNUCEDLLS lko. If in the best professional indomant of the analysis of the feature is a man-made ditch. USGS QUAD: Glen Alpine Longitude 81°48'48"W -this De.

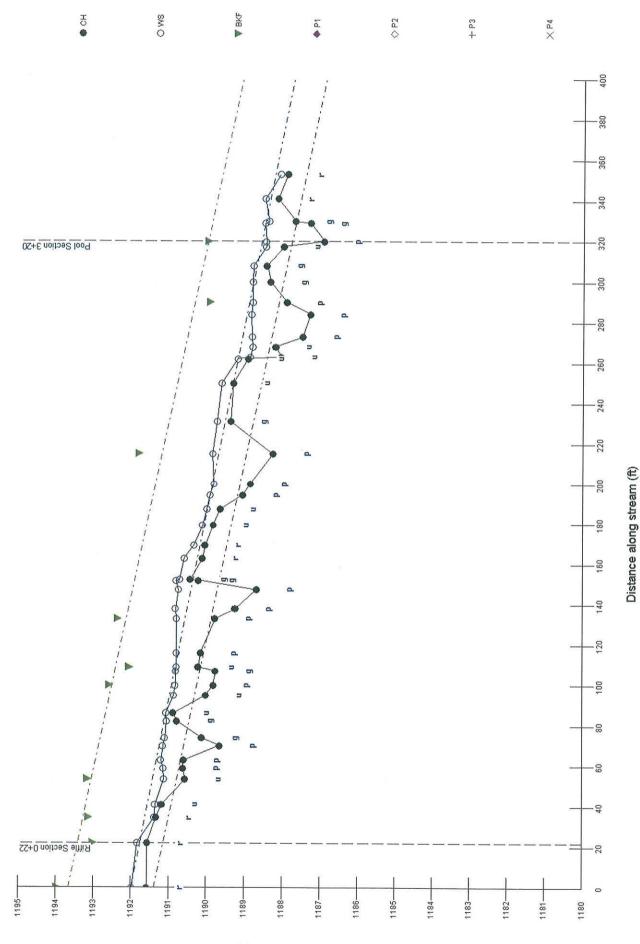
rimary Field Indicators: (Circle One Number Per Line)

. Geomorphology	Absent	Weak	Moderate	Strong	
) Is There A Riffle-Pool Sequence?	. 0	1	2	(3)	
) Is The USDA Texture In Streambed	•			(
Different From Surrounding Terrain?	Ð	-	2	υ.	
) Are Natural Levees Present?	ତ୍	1	2	3	ł
) Is The Channel Sinuous?	0	-	(2)	ы	
) Is There An Active (Or Relic)			()	
loodplain Present?	0.	1	2	(3)	
) Is The Channel Braided?	ම	1	2	3	
) Are Recent Alluvial Deposits Present?	Ø	1	2	3	
) Is There A Bankfull Bench Present?	0	1	2	3	
) Is A Continuous Bed & Bank Present? 0	0	1	2	9	
<u>NOTE: If Bed & Bank Caused by Ditching And WITHOUT Sites of A 2nd Order Or Greater Channel (As Indicated</u>	Cated	<u>;=0-)</u>			
On Topo Map And/Or In Field) Present?	Yes=3)		No=0		
RIMARY GEOMORPHOLOGY INDICATOR POINTS:	ATOR POINTS:	17			
I. Hydrology	Absent	Weak	Moderate	Strong	
) Is There A Groundwater /Discharge Present?	0	 4	2	3	
MUMARY HYDROLOGY INDICATOR POINTS: 3	POINTS: 3			,	
II. Biology	Absent	Weak	Moderate	Strong	
) Are Fibrous Roots Present In Streambed?	0	2		0	
) Are Rooted Plants Present In Streambed?	٩	2		0	
) Is Periphyton Present?	0	1	. 2	3	
Are Bivalves Present?	,e		2	3	1. ALC

Secondary Field Indicators: (Circle One Number Per Line)

PRIMARY BIOLOGY INDICATOR POINTS:

6


<u>. Geomorphology</u>) Is There A Head Cut Present In Channel?) Is There A Grade Control Point In Channel?) Does Topography Indicate A Jatural Drainage Way? FCONDARY GEOMORPHOLOGY INI	Absent	Weak .5 .5 .5 .5	Moderate 1 1	Strong 1.5	
) Is There A Head Cut Present In Channel?) Is There A Grade Control Point In Channel'	~ @©	is is	1	1.5	
) Does Topography Indicate A	D	л	1	()	
ECONDARY GEOMORPHOLOGY INDICATOR POINTS: 1, 5	DICATOR POIN	TS: 1.5		1	
I. Hydrology	Absent	Weak	Moderate	Strong	
) Is This Year's (Or Last's) Leaflitter	1 A .		<i>()</i>	0	
Present in Streambed/	J.	-		1 5	

I. Hydrology) Is This Year's (Or Last's) Leaflitter Present In Streambed?) Is Sediment On Plants (Or Debris) Present?	Absent	Weak M	Moderate	Strong 0 1.5	
Water In Channel And >48 Hrs. Since 0 .5 ast Known Rain? (*NOTE: If Ditch Indicated In #9 Above Skip This Step And #5 Below*)) Is There Water In Channel During Dry 0 .5 onditions Or In Growing Season)?) Are Hydric Soils Present In Sides Of Channel (Or In Headcut)? Yes (ECONDARY HYDROLOGY INDICATOR POINTS: 2	0 0 0 Or In Headcut)? POINTS: 2	.5 .5 .7 Yes=1.5	1 1 (No=0)	1.5	
II. Biology) Are Fish Present?) Are Amphibians Present?) Are AquaticTurtles Present?) Are Cravfish Present?	Absent 0 0		Moderate	Strong 1.5 1.5 1.5	
<u>esent?</u> <u>acteria/Fungus Present?</u> <u>Present?</u> 1 Streambed? <i>f All Plants In Streambed</i>	0 SAV Mostly OBL	.5 .5	1 1 Mostly FAC .5	1.5 Mostly FACU Mostly UPL 0 0 0	Mostly UPL

FOTAL POINTS (Primary + Secondary)=32 (ffGreater Than Or Equal To 19 Points The Stream Is At Least Intermittent)

- NOTE: If Total Absence Of All Plants In Streambed 2 <u>ts Noted Above Skip This Step UNLESS SAV Present</u>) SECONDARY BIOLOGY INDICATOR POINTS: 2.5

Silver Creek Reference Reach (Brindle Creek) Longitudnal Profile

(ft) noitsvel3

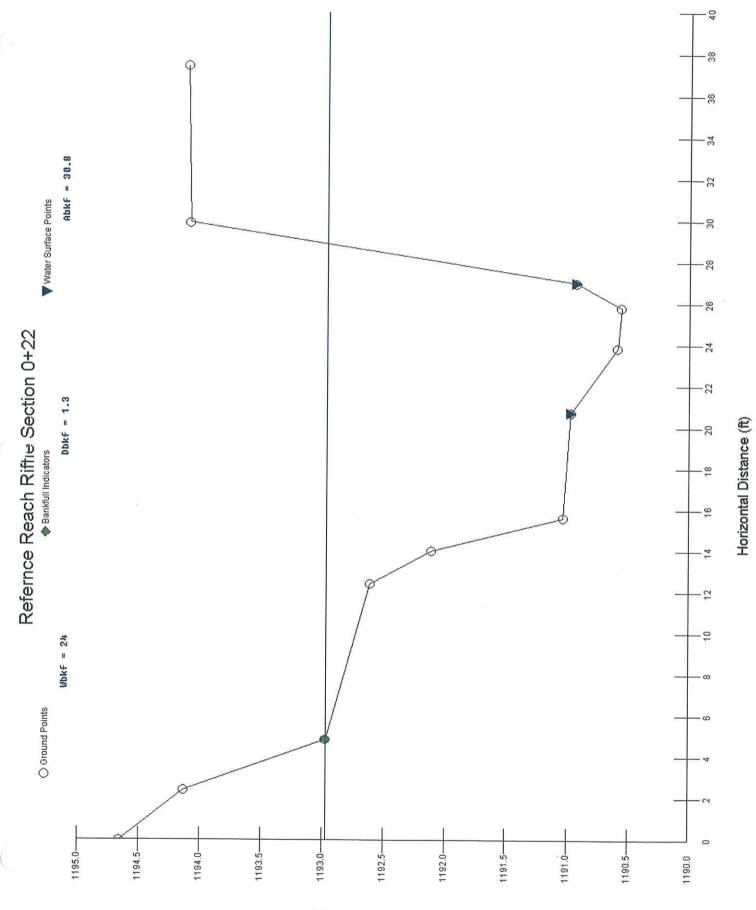
River Name:	Silver Creek & Trib Restoration
Reach Name:	Reach 1 (Reference Reach)
Profile Name:	Ref Reach Long Pro
Survey Date:	01/13/06

Survey Data

~~~~~~~~~~~~~~~~

| STA                                                                            | СН                                                                                   | WS                                                                         | BKF                  | Р1 | P2 | Р3 | Р4 |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|----|----|----|----|
| 0<br>22<br>34.6                                                                | 8.43<br>8.44<br>8.67                                                                 | 8.02<br>8.16<br>8.62                                                       | 6.02<br>6.98<br>6.86 |    |    |    |    |
| 41<br>53.5<br>59<br>63<br>70<br>74<br>82.3<br>86.3<br>95                       | 8.82<br>9.44<br>9.38<br>9.4<br>10.35<br>9.88<br>9.22<br>9.12<br>9.98                 | 8.65<br>8.88<br>8.86<br>8.8<br>8.85<br>8.9<br>8.95<br>8.95<br>8.93<br>9.13 | 6.84                 |    |    |    |    |
| 100<br>107                                                                     | 10.18                                                                                | 9.17<br>9.18                                                               | 7.4                  |    |    |    |    |
| 109<br>116                                                                     | 9.78                                                                                 | 9.2<br>9.2<br>9.2                                                          | 7.94                 |    |    |    |    |
| 133<br>138<br>147.5<br>152<br>152.5<br>163<br>169.6<br>179.5<br>187.5<br>194.5 | $10.22 \\ 10.75 \\ 11.31 \\ 9.78 \\ 9.56 \\ 9.88 \\ 9.95 \\ 10.16 \\ 10.35 \\ 10.94$ | 9.2<br>9.17<br>9.25<br>9.18<br>9.28<br>9.4<br>9.66<br>9.88<br>10<br>10.08  | 7.62                 |    |    |    |    |
| 200<br>215<br>231<br>250<br>262<br>263<br>268<br>273<br>284                    | 11.1510.989.869.9310.3211.1911.0411.7611.96                                          | 10.189.399.519.6210.0510.3810.4410.4210.4                                  | 7.43                 |    |    |    |    |
| 290<br>300<br>308<br>317.5                                                     | $     11.33 \\     10.9 \\     10.8 \\     11.26 $                                   | 10.44<br>10.44<br>10.45<br>10.78                                           | 9.3                  |    |    |    |    |
| 320<br>329<br>330<br>341<br>353                                                | $11.20 \\ 12.32 \\ 11.96 \\ 11.56 \\ 11.1 \\ 11.35$                                  | 10.78<br>10.78<br>10.76<br>10.86<br>10.76<br>11.17                         | 9.25                 |    |    |    |    |

Cross Section / Bank Profile Locations


\_\_\_\_\_

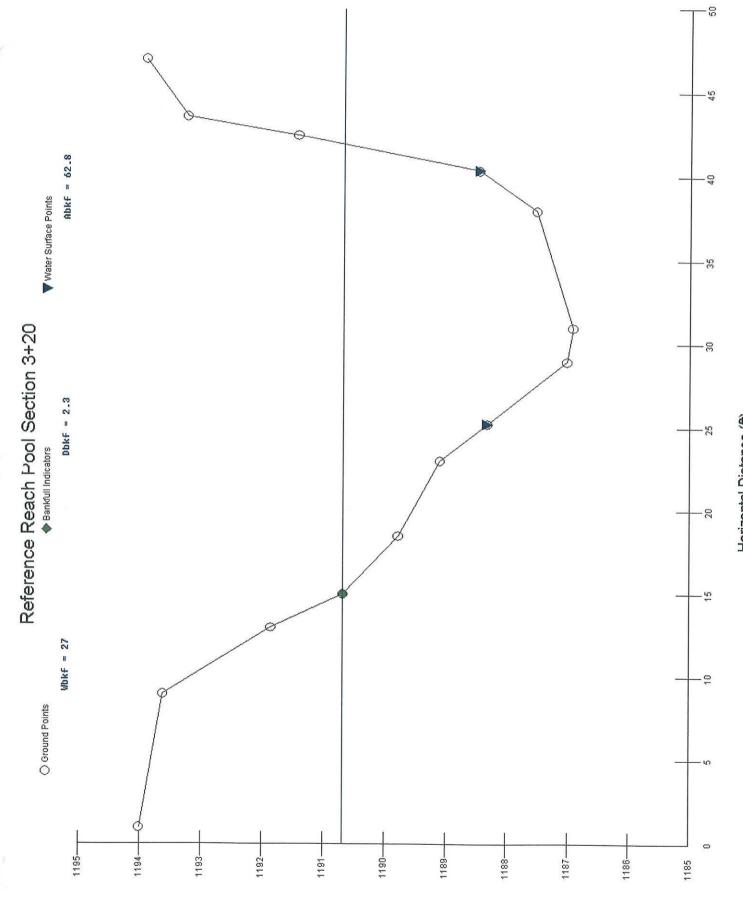
| Riffle Sec<br>Pool Secti                                                                                                                                                                            |                                                                                                                                                                                                                                                           | Riffle XS<br>Pool XS               | 22<br>320                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|
| Measuremer                                                                                                                                                                                          | ts from Graph                                                                                                                                                                                                                                             |                                    |                                                                                                    |
| Bankfull S                                                                                                                                                                                          | lope: 0.01149                                                                                                                                                                                                                                             |                                    |                                                                                                    |
| Variable                                                                                                                                                                                            |                                                                                                                                                                                                                                                           | A∨g                                | Мах                                                                                                |
| Dmax run<br>Dmax glide<br>Low Bank H                                                                                                                                                                | 0.00099<br>0.0125<br>0.00199<br>67.6<br>11.01<br>e 1.62<br>2.71<br>1.87<br>1.64<br>t 0<br>depth measurements                                                                                                                                              | 2.3<br>2.21<br>0<br>in feet, slope | 0.00947<br>0.03619<br>0.00753<br>77.5<br>31.56<br>1.86<br>3.29<br>2.56<br>2.7<br>0<br>es in ft/ft. |
|                                                                                                                                                                                                     | KIVERMO                                                                                                                                                                                                                                                   | RPH PROFILE SUM<br>Notes           | IMARY                                                                                              |
| Reach Name<br>Profile Na                                                                                                                                                                            | : Silver Creek &<br>: Reach 1 (Refere<br>me: Ref Reach Long<br>e: 01/13/06<br>Note                                                                                                                                                                        | nce Reach)                         | n                                                                                                  |
| 0                                                                                                                                                                                                   | Riffle Begin                                                                                                                                                                                                                                              | <b>_</b>                           |                                                                                                    |
| $\begin{array}{c} 22\\ 34.6\\ 41\\ 53.5\\ 59\\ 63\\ 70\\ 74\\ 82.3\\ 86.3\\ 95\\ 100\\ 107\\ 109\\ 116\\ 133\\ 138\\ 147.5\\ 152\\ 152.5\\ 163\\ 169.6\\ 179.5\\ 187.5\\ 194.5\\ 200\\ \end{array}$ | Riffle X-S<br>Riffle End<br>Run<br>Pool Top<br>Pool Center<br>Glide<br>Glide<br>Run<br>Pool<br>Glide<br>Run<br>Pool<br>Pool Transition (C<br>Pool Center<br>Pool<br>Glide<br>Glide<br>Glide<br>Riffle<br>Riffle End<br>Run<br>Run<br>Pool<br>Pool Thalweg | ompound Pool)                      |                                                                                                    |

| 215<br>231 | Pool<br>Glide               |
|------------|-----------------------------|
| 250        | Run                         |
| 262        | Run                         |
| 263        | Run                         |
| 268        | Run - Top Lat. Log Vane     |
| 273        | Pool - Bottom Lat. Log Vane |
| 284        | Pool                        |
| 290        | Pool                        |
| 300        | Glide                       |
| 308        | Glide                       |
| 317.5      | Run                         |
| 320        | Pool (X-S)                  |
| 329        | Glide                       |
| 330        | Glide                       |
| 341        | Riffle                      |
| 353        | Riffle End                  |

| River Name:<br>Reach Name:<br>Sample Name:<br>Survey Date:                                                                                                                                                                                                                                                                      | Silver Creek<br>Reach 1 (Refe<br>Riffle X-S 04<br>01/19/06                                                                                                  | & Trib Res<br>erence Reac<br>+22 | storation<br>ch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Size (mm)                                                                                                                                                                                                                                                                                                                       | тот #                                                                                                                                                       | ITEM %                           | CUM %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 0 - 0.062<br>0.062 - 0.125<br>0.125 - 0.25<br>0.25 - 0.50<br>0.50 - 1.0<br>1.0 - 2.0<br>2.0 - 4.0<br>4.0 - 5.7<br>5.7 - 8.0<br>8.0 - 11.3<br>11.3 - 16.0<br>16.0 - 22.6<br>22.6 - 32.0<br>32 - 45<br>45 - 64<br>64 - 90<br>90 - 128<br>128 - 180<br>180 - 256<br>256 - 362<br>362 - 512<br>512 - 1024<br>1024 - 2048<br>Bedrock | 0                                                                                                                                                           |                                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>10.00<br>20.00<br>40.00<br>60.00<br>90.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>00<br>100.00<br>00<br>00<br>00<br>00<br>100.00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |  |
| D16 (mm)<br>D35 (mm)<br>D50 (mm)<br>D84 (mm)<br>D95 (mm)<br>D100 (mm)<br>Silt/Clay (%)<br>Sand (%)<br>Gravel (%)<br>Gravel (%)<br>Boulder (%)<br>Bedrock (%)                                                                                                                                                                    | $     19.96 \\     29.65 \\     38.5 \\     60.2 \\     77 \\     90 \\     0 \\     0 \\     90 \\     10 \\     0 \\     0 \\     0     0     0     0   $ |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

Total Particles = 10 (need at least 60).




(ft) noitsvel3



0

C

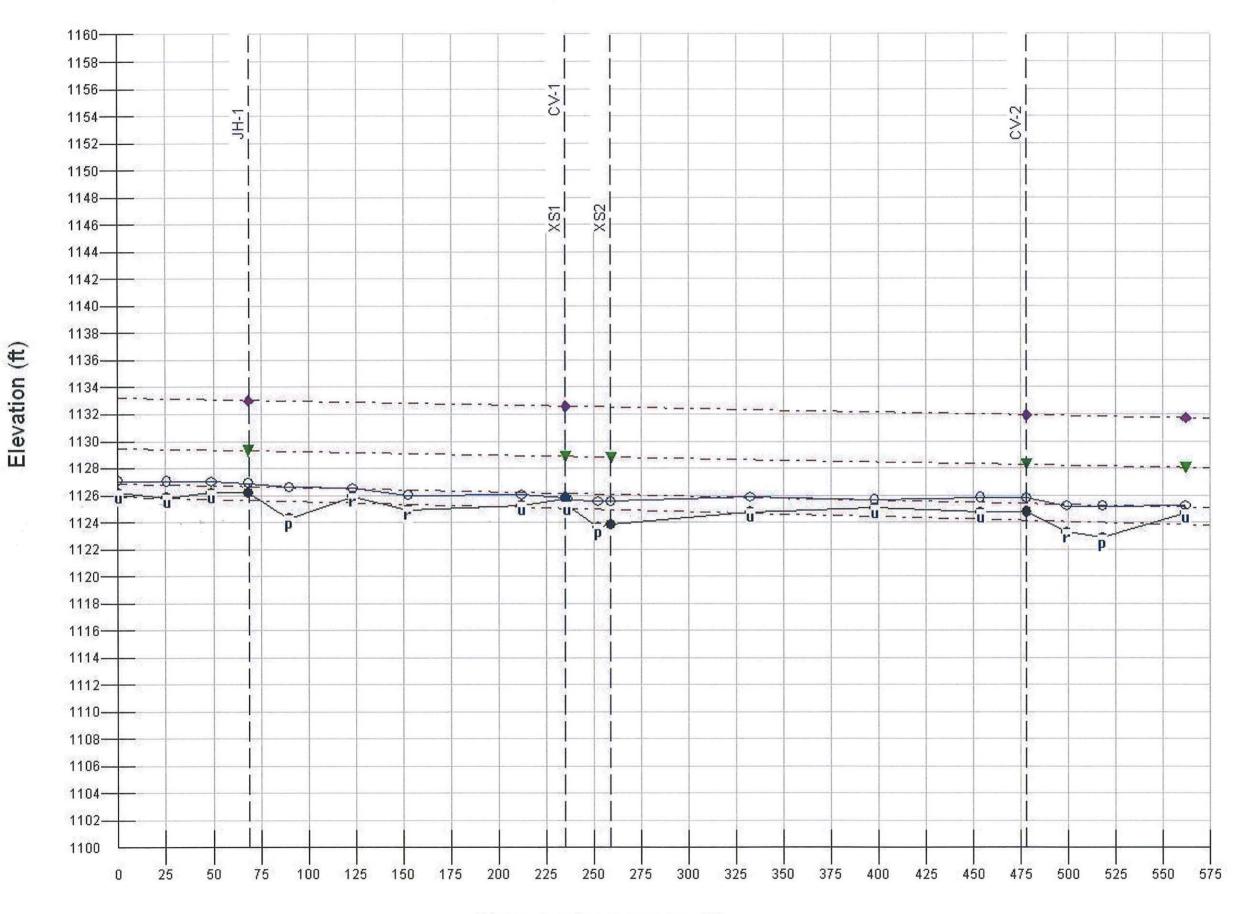
Reference Reach Riffle Cross-Section Profile Station 0+22 January 13, 2006



(ft) noitsval3

Horizontal Distance (ft)




Reference Reach Pool Cross-Section Profile Station 3+20 January 13, 2006

 $\bigcirc$ 

Mitigation Plan – Silver Creek Restoration

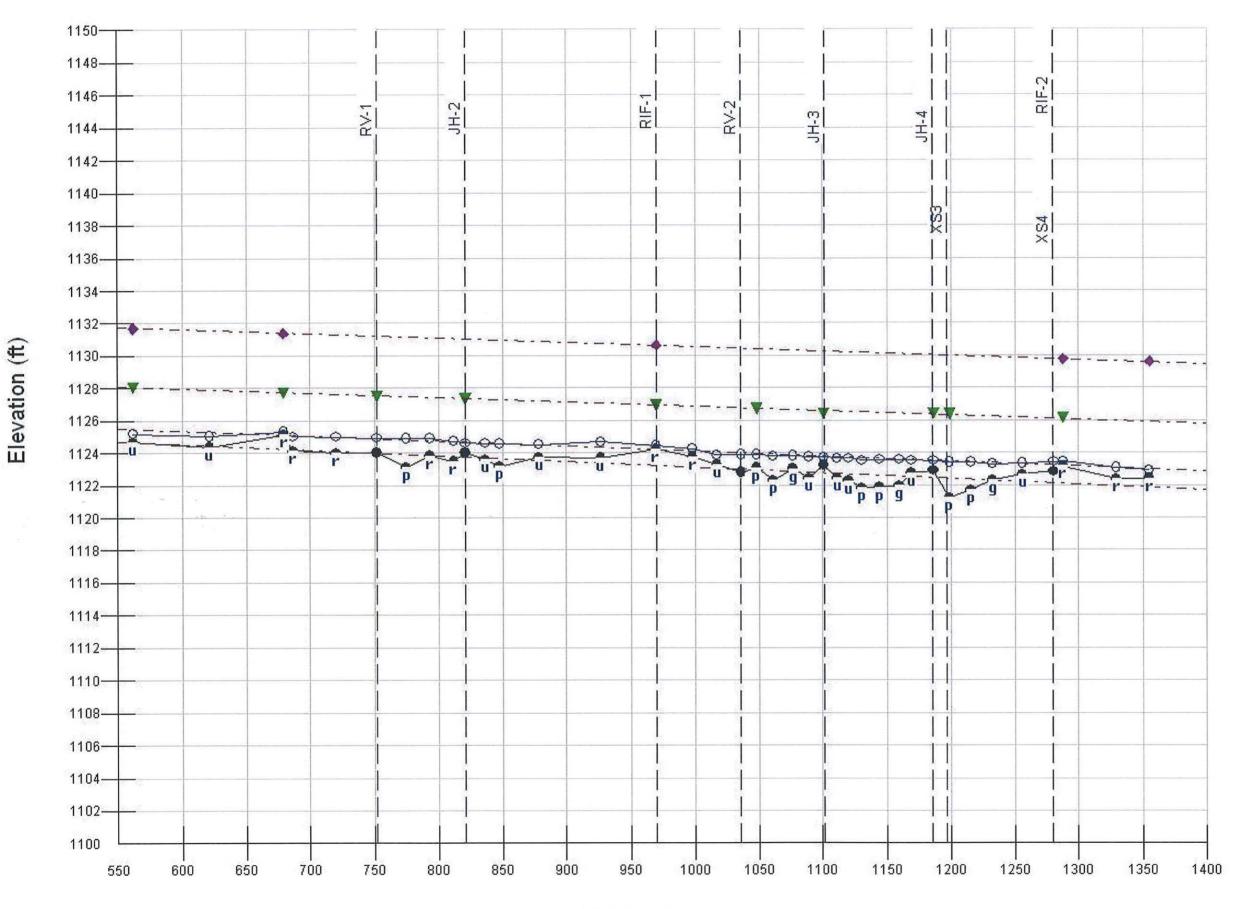
Appendix C As-Built Long-Term Monitoring Profiles

# Silver Creek "As-Built" Longitudinal Profile Sta. 0+00 - 5+62.03 - Year 0



Distance along stream (ft)




O WS





| CH = Thalweg Elev.          |
|-----------------------------|
| WS = Water Surface<br>Elev. |
| BKF = Bankfull Elev.        |
| FP = Floodprone Elev.       |
| r = Riffle                  |
| u = Run                     |
| p = Pool                    |
| g = Glide                   |
| JH = J-hook Vane            |
| CV = Cross Vane             |
| RV = Rock Vane              |
| DWJ = Dual-Winged<br>Jetty  |
| RIF = Constructed<br>Riffle |
|                             |

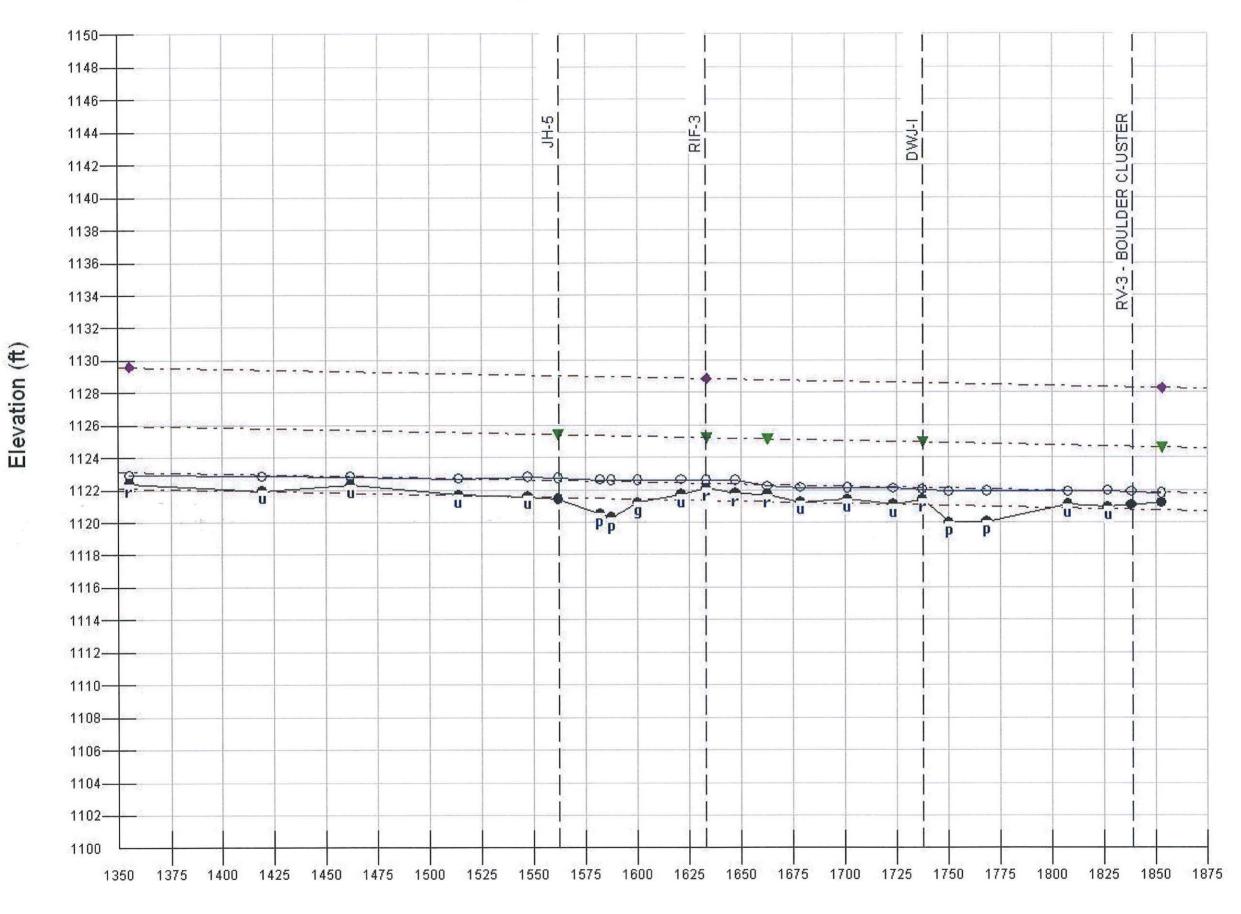
Silver Creek "As-Built" Longitudinal Profile Sta. 5+62.03 - 13+55.22 - Year 0



Distance along stream (ft)

• CH

O WS



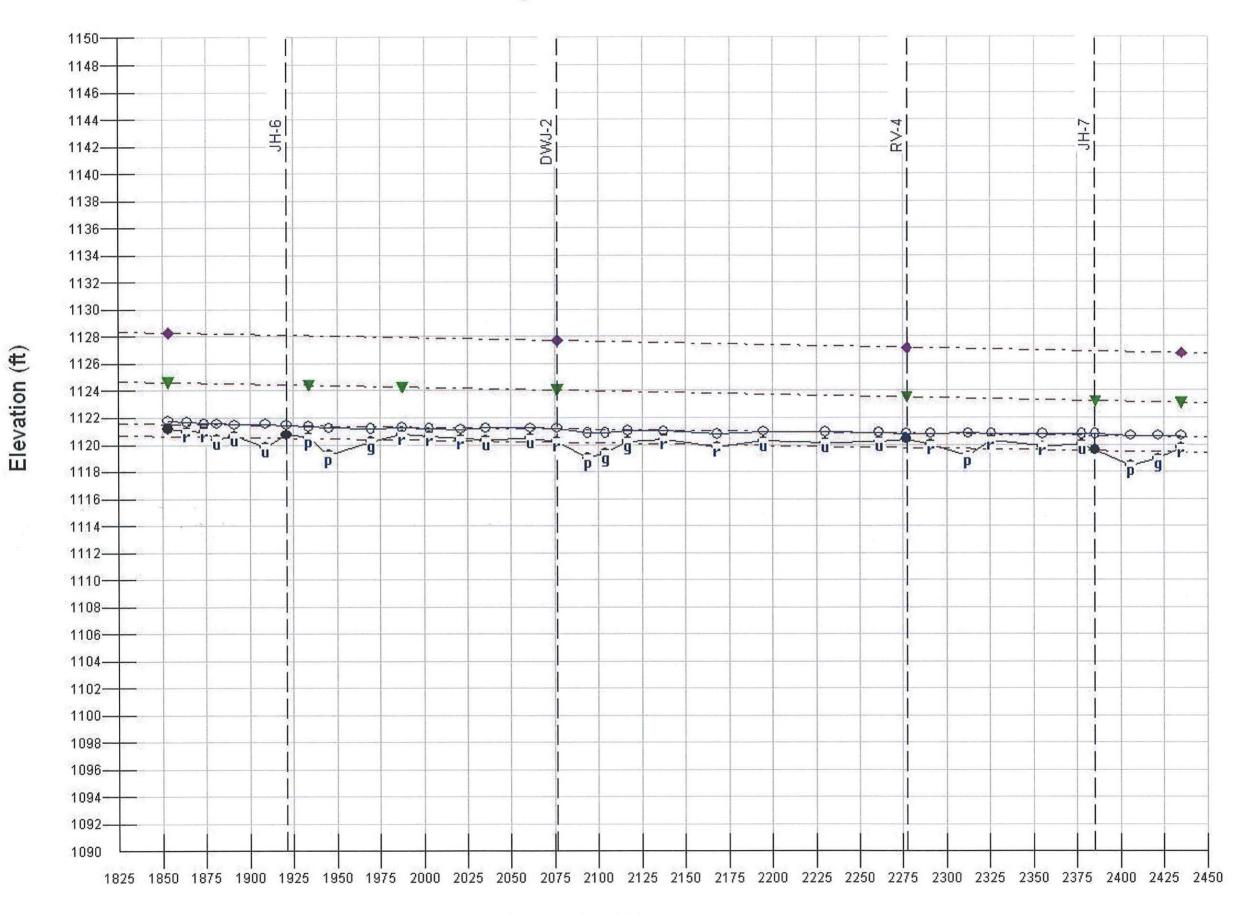

**V** BKF

♦ FP

| CH = Thalweg Elev.          |
|-----------------------------|
| WS = Water Surface<br>Elev. |
| BKF = Bankfull Elev.        |
| FP = Floodprone Elev.       |
| r = Riffle                  |
| u = Run                     |
| p = Pool                    |
| g = Glide                   |
| JH = J-hook Vane            |
| CV = Cross Vane             |
| RV = Rock Vane              |
| DWJ = Dual-Winged<br>Jetty  |
| RIF = Constructed<br>Riffle |

Silver Creek "As-Built" Longitudinal Profile Sta. 13+55.22 - 18+53.14 - Year 0




Distance along stream (ft)



🔶 FP

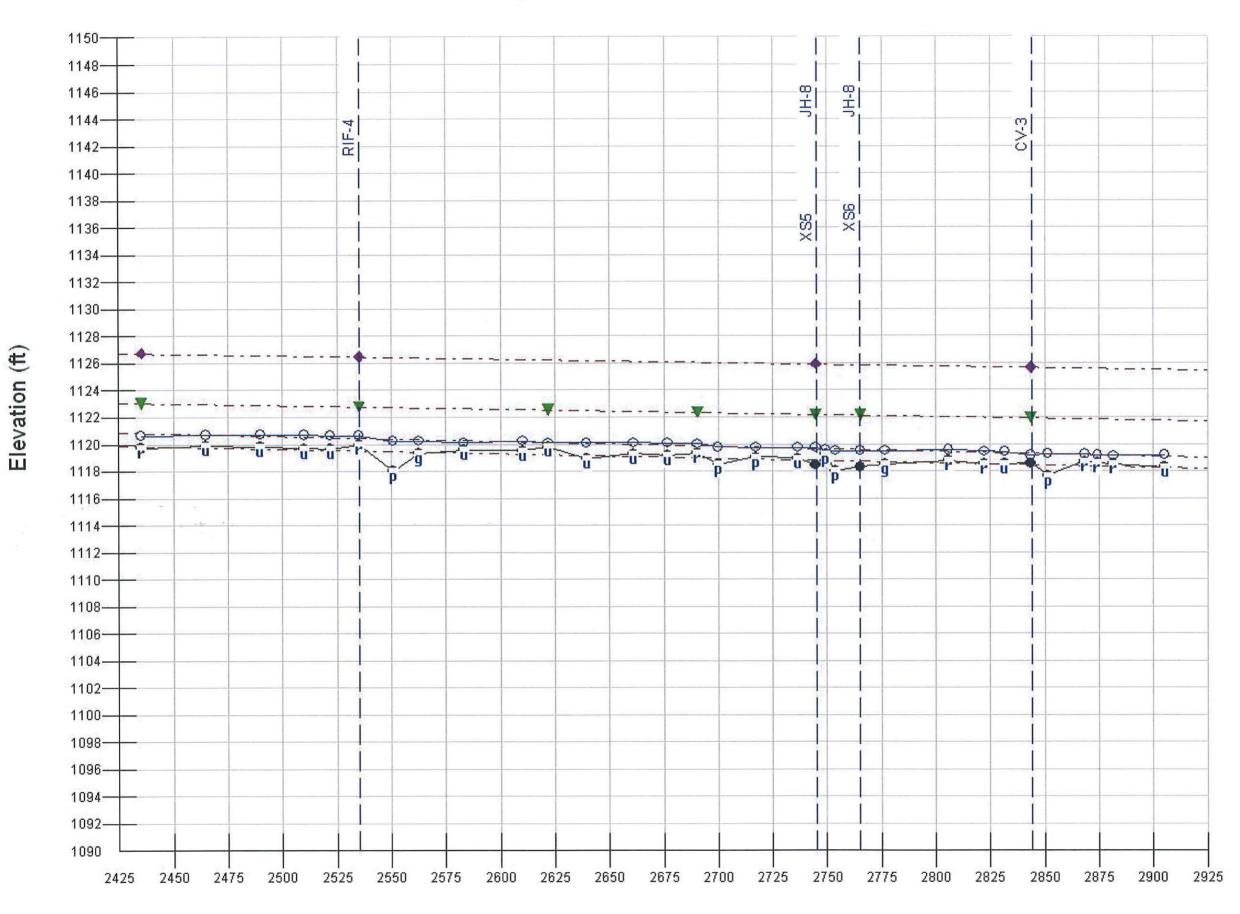
| CH = Thalweg Elev.          |
|-----------------------------|
| WS = Water Surface<br>Elev. |
| BKF = Bankfull Elev.        |
| FP = Floodprone Elev.       |
| r = Riffle                  |
| u = Run                     |
| p = Pool                    |
| g = Glide                   |
| JH = J-hook Vane            |
| CV = Cross Vane             |
| RV = Rock Vane              |
| DWJ = Dual-Winged<br>Jetty  |
| RIF = Constructed<br>Riffle |

Silver Creek "As-Built" Longitudinal Profile Sta.18+53.14 - 24+35.21 - Year 0



Distance along stream (ft)








### **LEGEND**

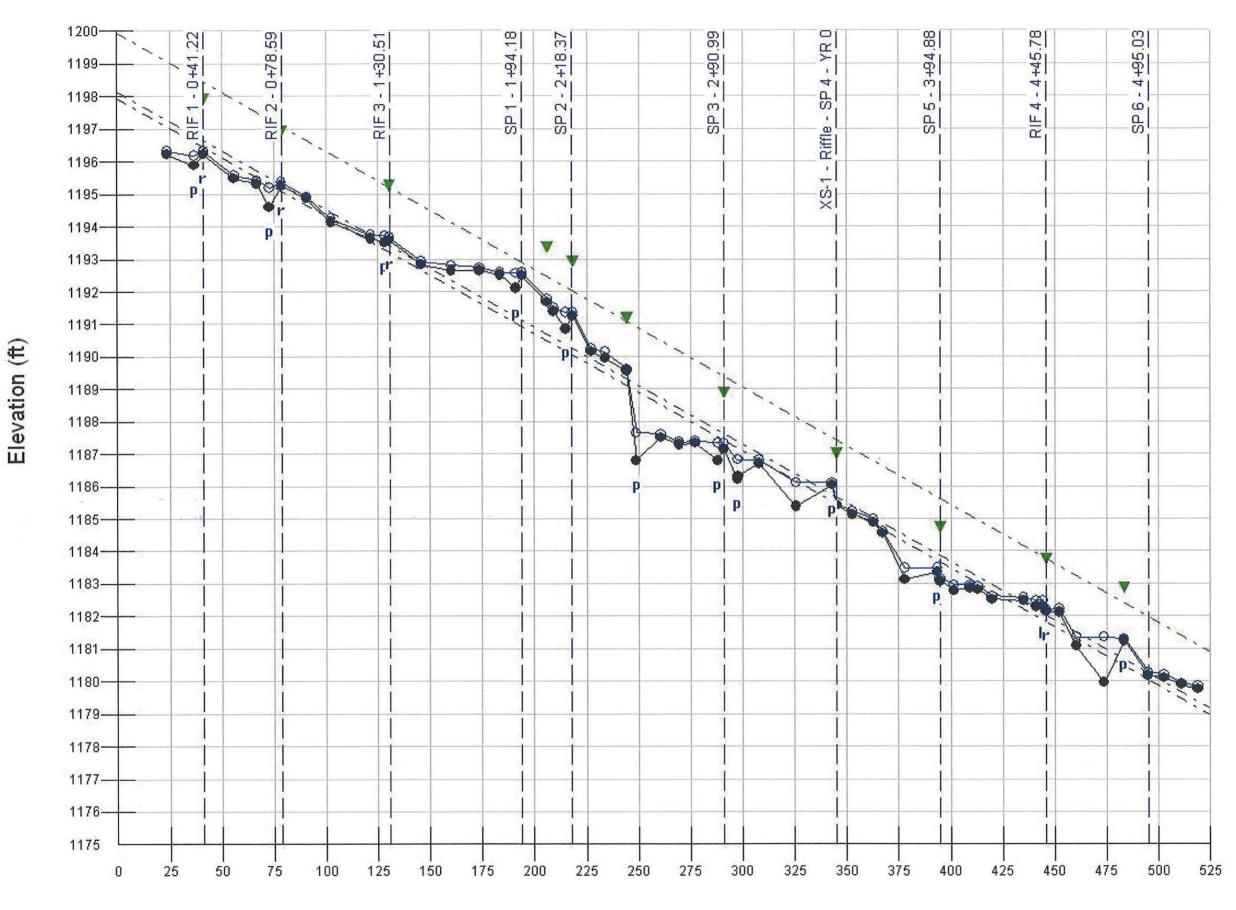
| CH = Thalweg Elev.          |
|-----------------------------|
| WS = Water Surface<br>Elev. |
| BKF = Bankfull Elev.        |
| FP = Floodprone Elev.       |
| r = Riffle                  |
| u = Run                     |
| p = Pool                    |
| g = Glide                   |
| JH = J-hook Vane            |
| CV = Cross Vane             |
| RV = Rock Vane              |
| DWJ = Dual-Winged<br>Jetty  |
| RIF = Constructed           |

RIF = Constructer Riffle



Silver Creek "As-Built" Longitudinal Profile Sta. 24+35.21 - 29+05.24 - Year 0

Distance along stream (ft)


• CH O WS



🔶 FP

| CH = Thalweg Elev.          |
|-----------------------------|
| WS = Water Surface<br>Elev. |
| BKF = Bankfull Elev.        |
| FP = Floodprone Elev.       |
| r = Riffle                  |
| u = Run                     |
| p = Pool                    |
| g = Glide                   |
| JH = J-hook Vane            |
| CV = Cross Vane             |
| RV = Rock Vane              |
| DWJ = Dual-Winged<br>Jetty  |
| RIF = Constructed<br>Riffle |
|                             |

UT-A to Silver Creek - Sta. 0+23.85- 5+19.09 - As-Built - June 2007



Distance along stream (ft)



CH

O WS

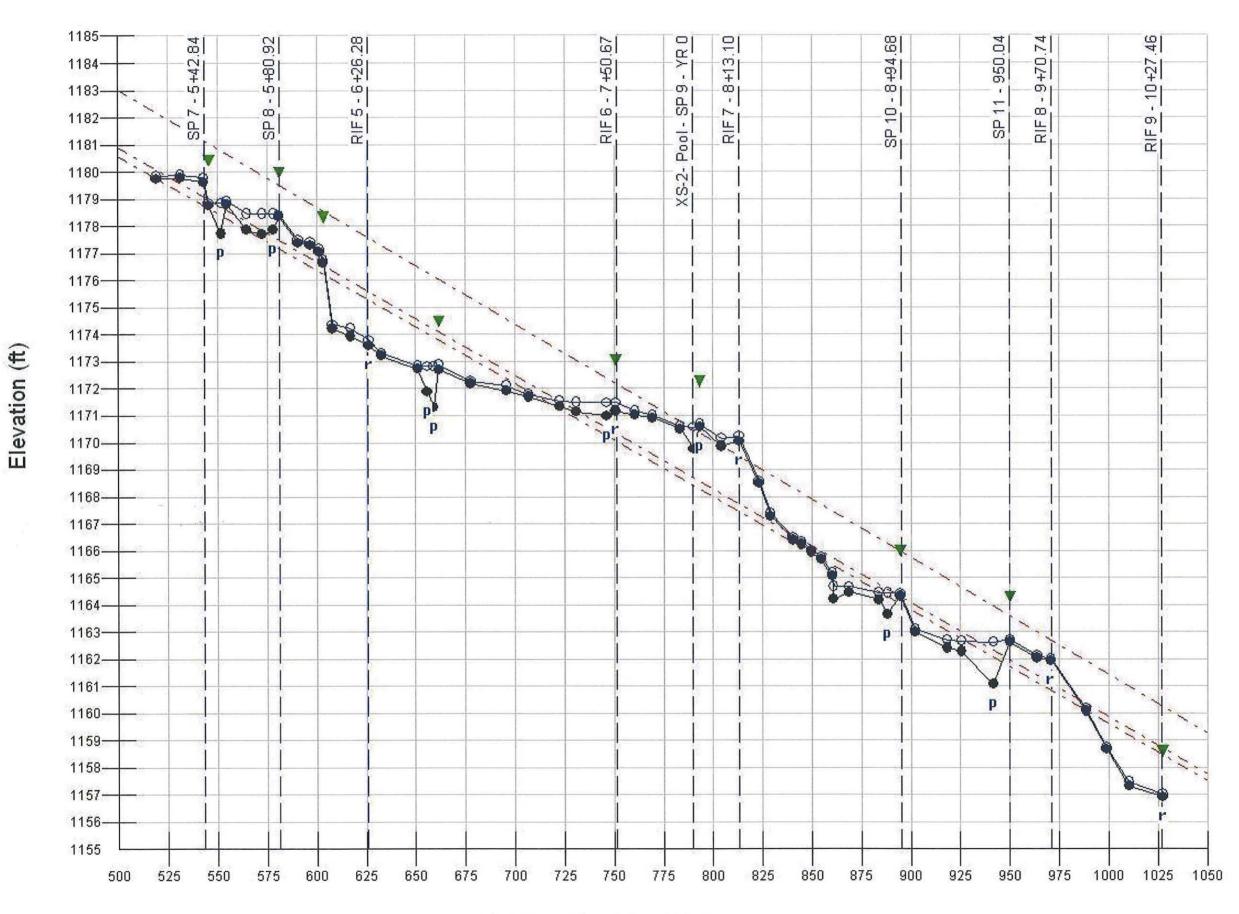


### **LEGEND**

CH = Thalweg Elev.

WS = Water Surface Elev.

**BKF = Bankfull** Elev.


r = Riffle

p = Pool

SP = Constructed Step-Pool

> RIF = Constructed Riffle

UT-A to Silver Creek - Sta. 5+19.09 - 10+27.46 - As-Built - June 2007



Distance along stream (ft)

• CH



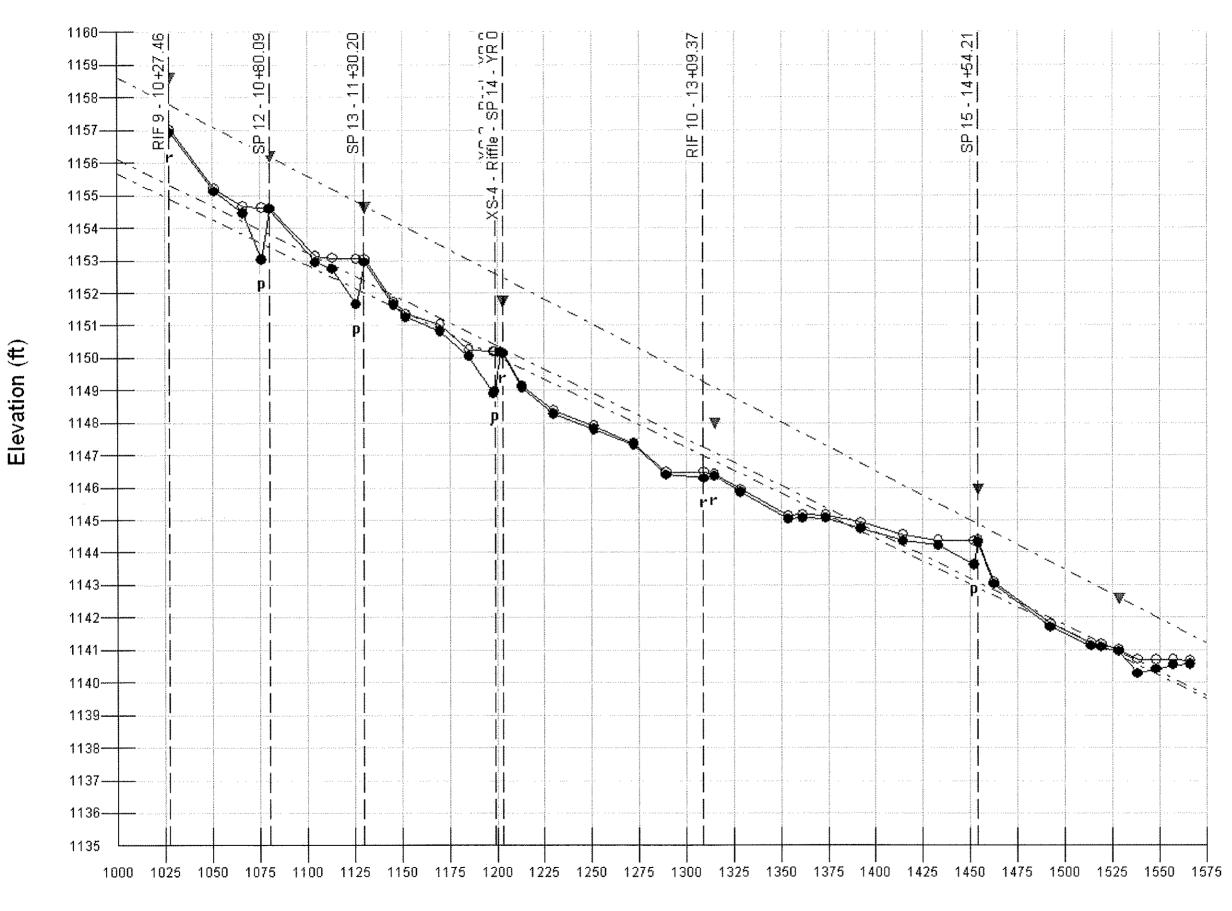


### LEGEND

CH = Thalweg Elev.

WS = Water Surface Elev.

BKF = Bankfull Elev.


r = Riffle

p = Pool

SP = Constructed Step-Pool

> RIF =Constructed Riffle

UT-A to Silver Creek - Sta. 10+27.46 - 15+66.60 - As-Built - June 2007



Distance along stream (ft)

● CH

⊖ WS

🗑 BKF

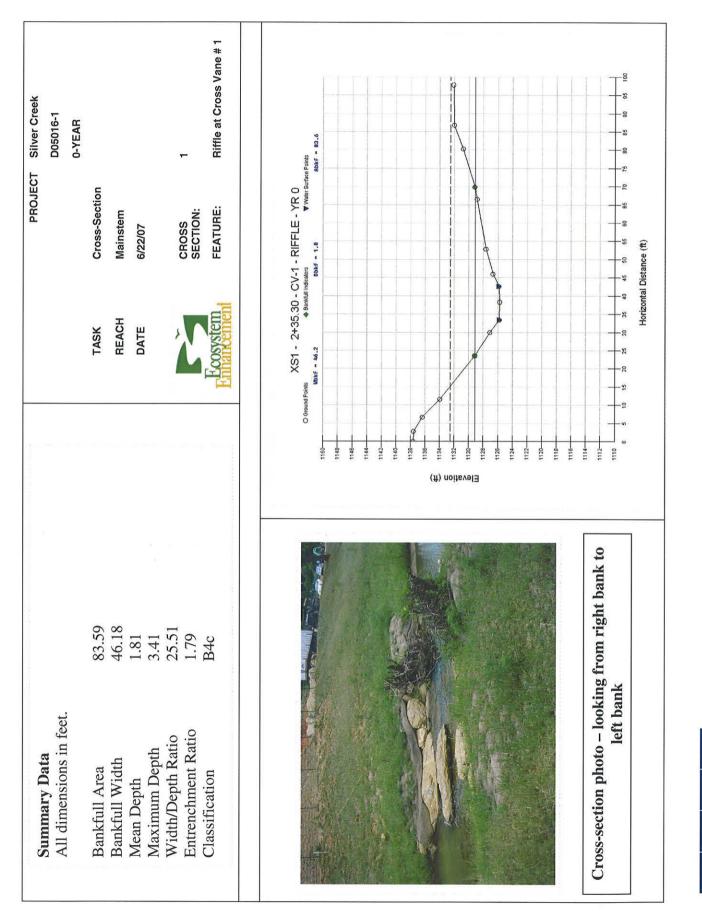
### LEGEND

CH = Thalweg Elev.

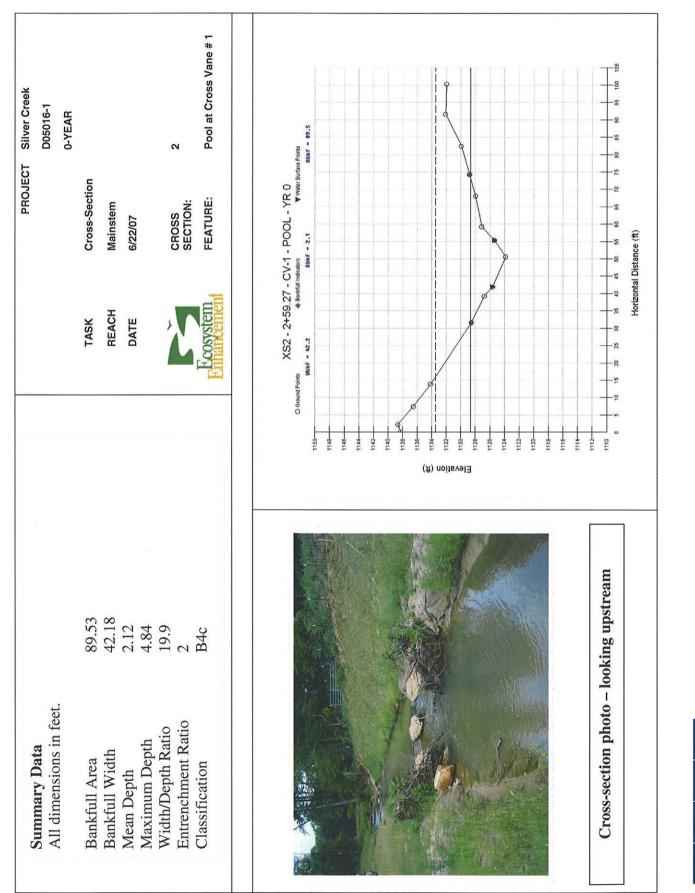
WS = Water Surface Elev.

BKF = Bankfull Elev.

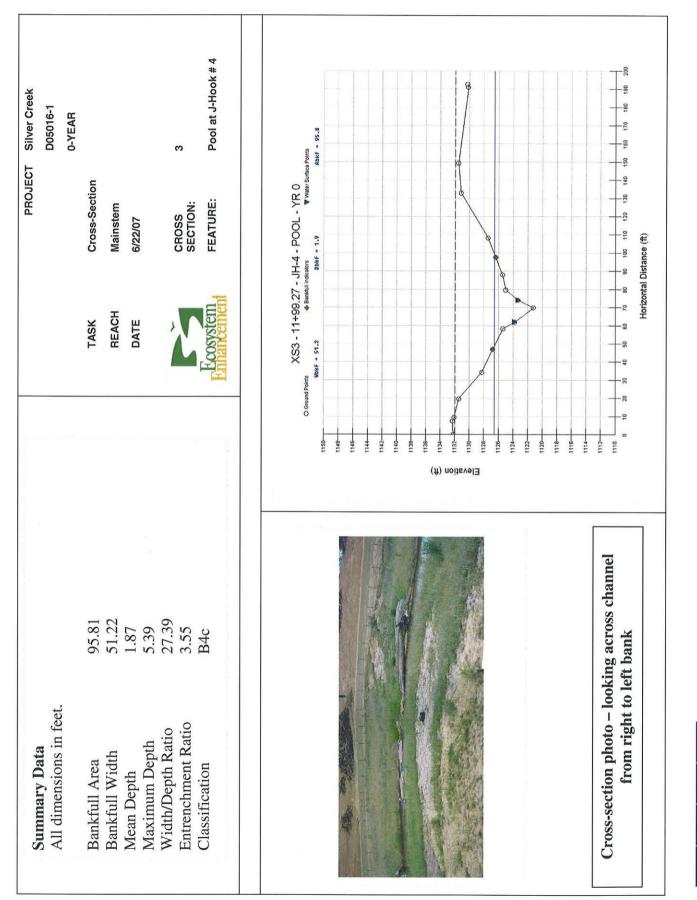
r = Riffle


p = Pool

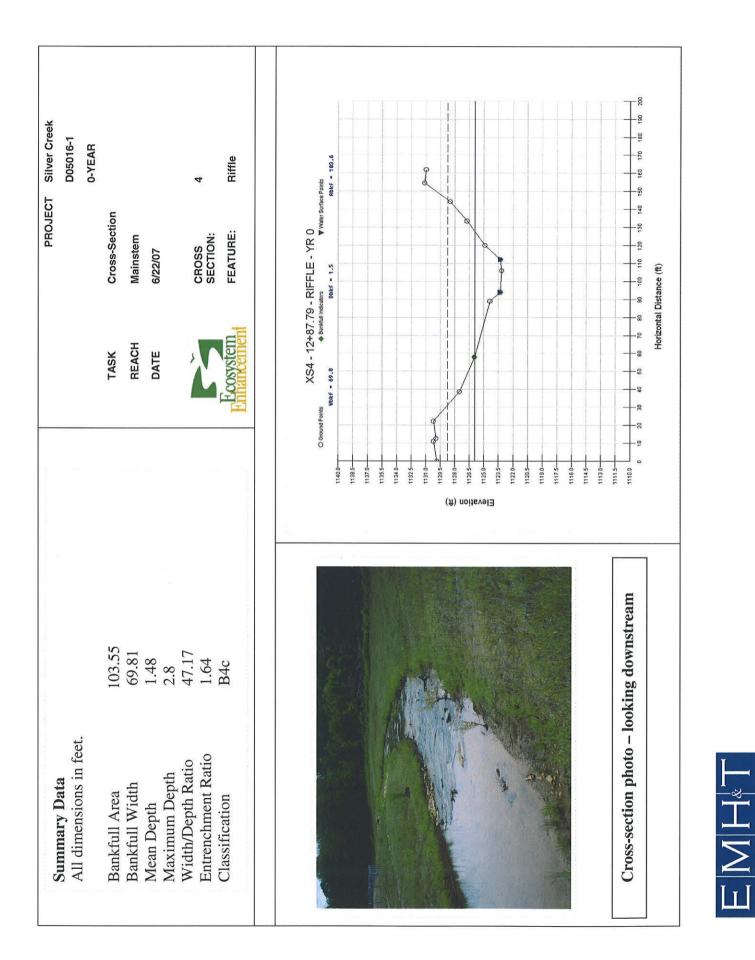
SP = Constructed Step-Pool

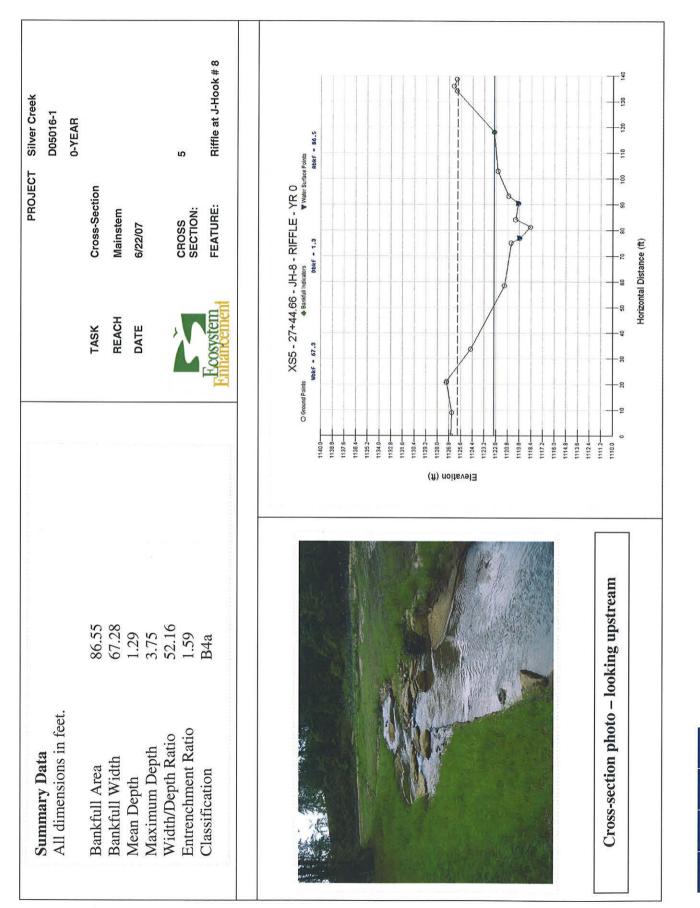

> RIF = Constructed Riffle

Mitigation Plan – Silver Creek Restoration

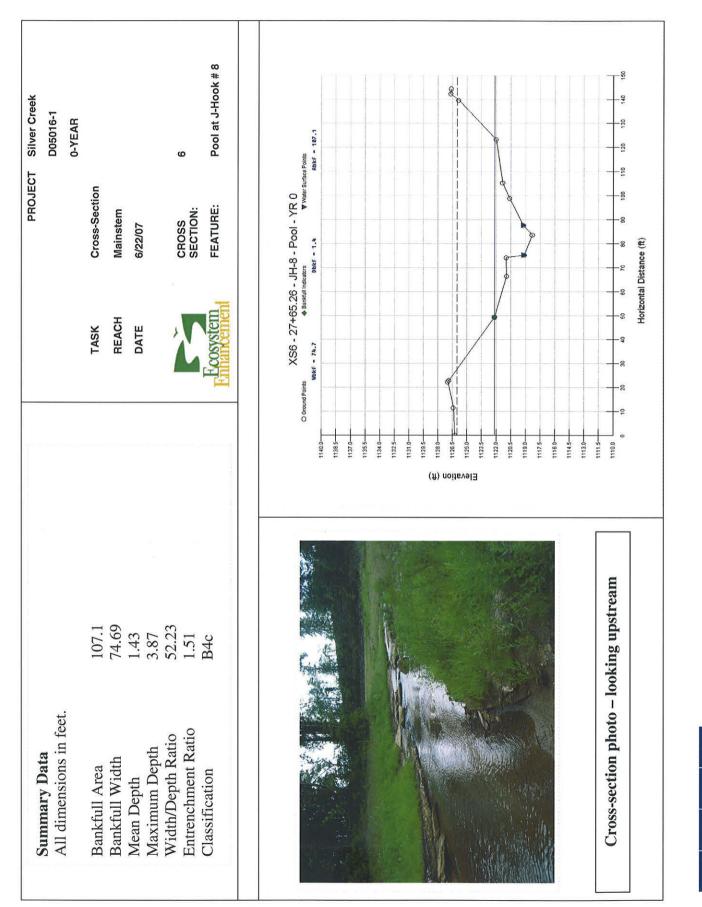

Appendix D As-Built Long-Term Monitoring Cross-Section Summary Templates



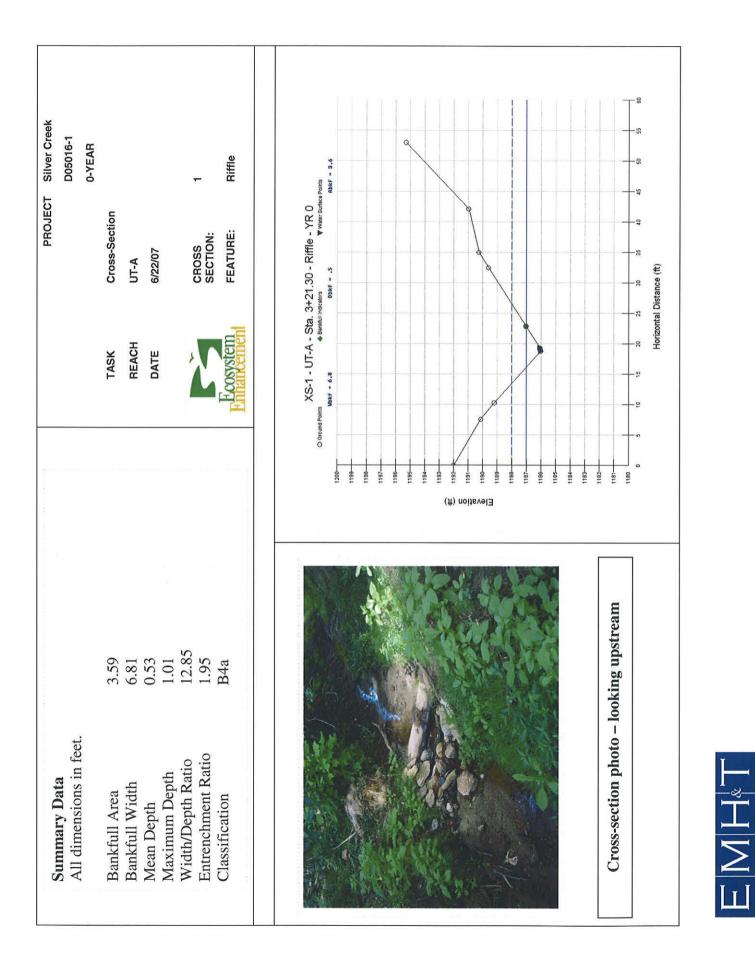


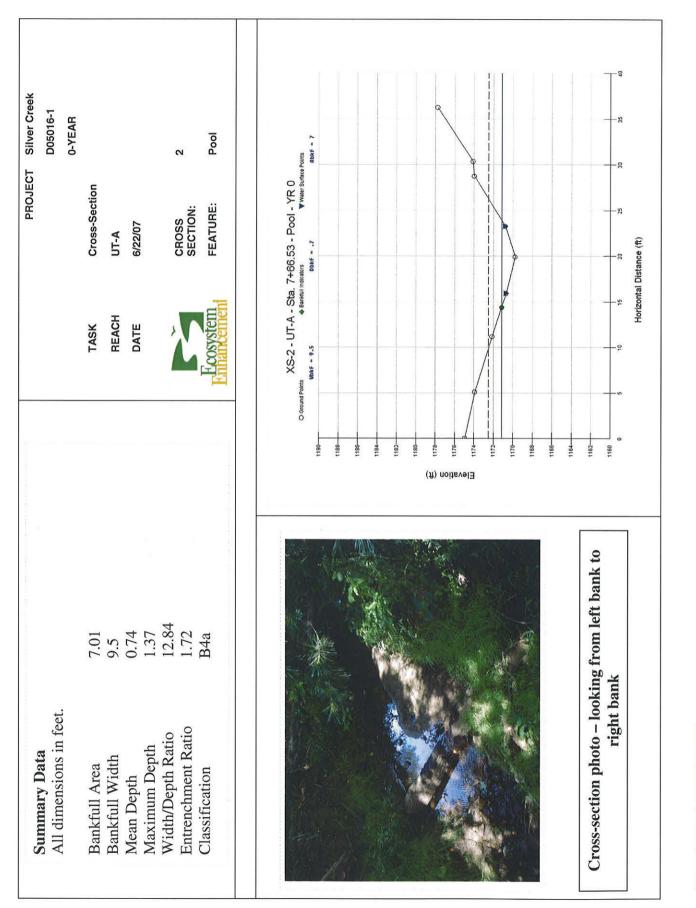





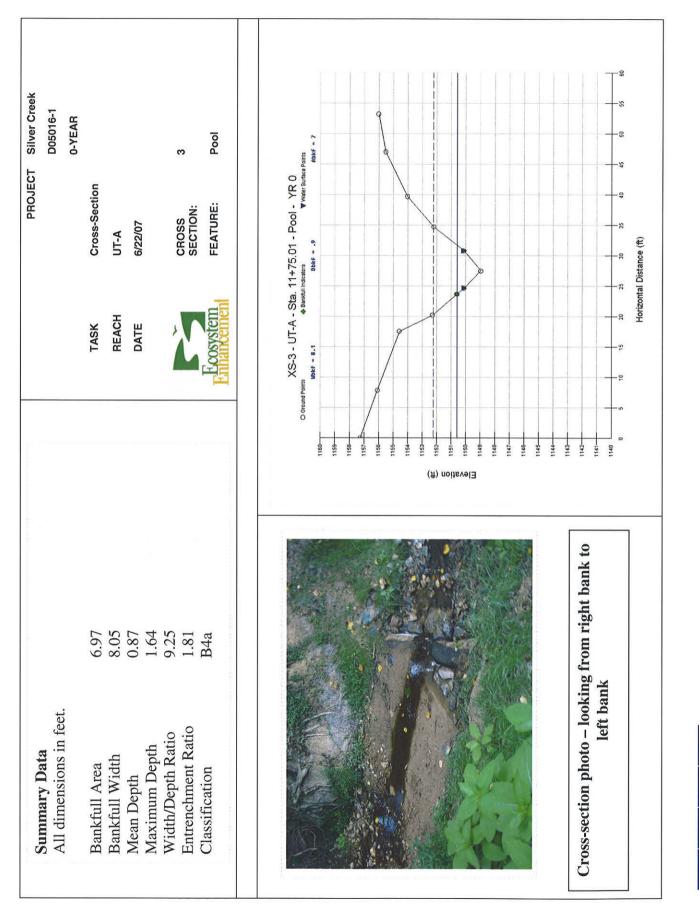




 $E M H^{*}T$ 

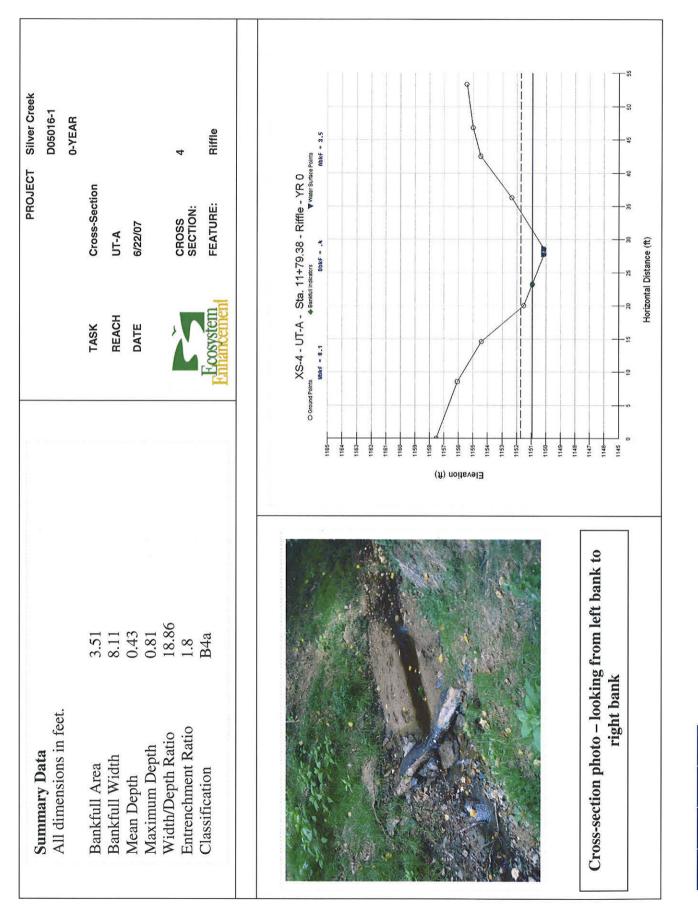












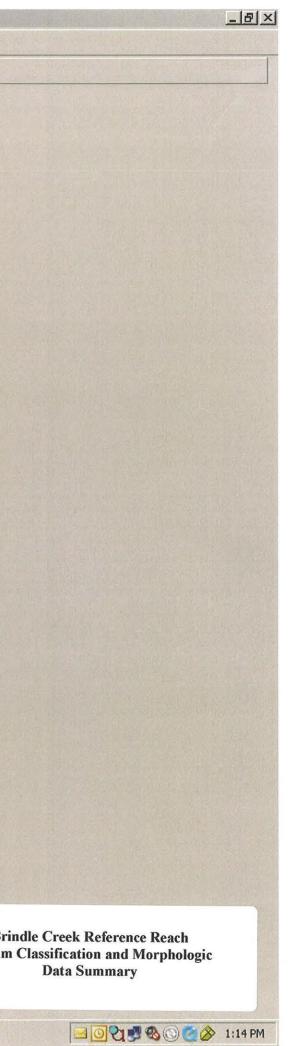


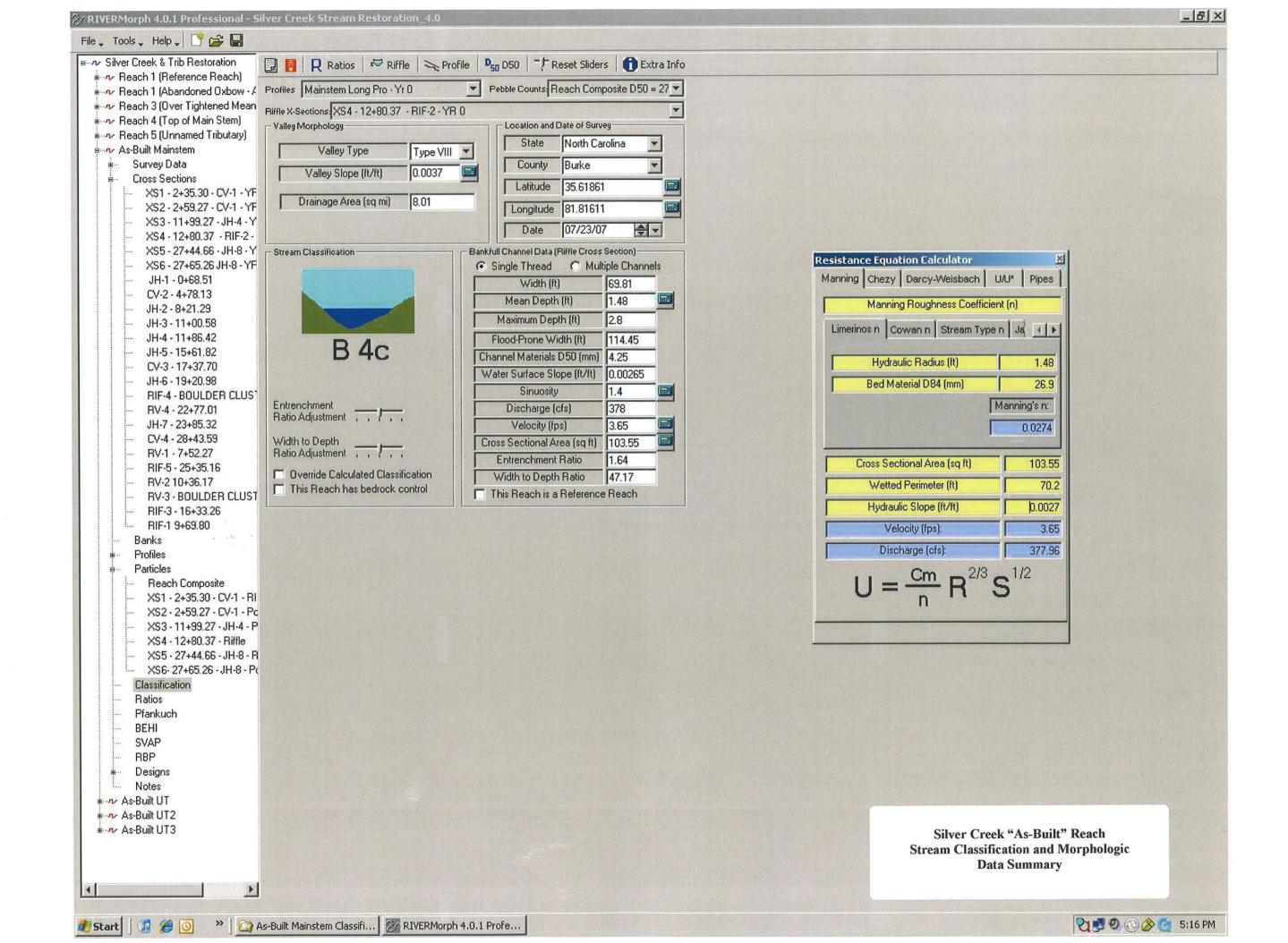


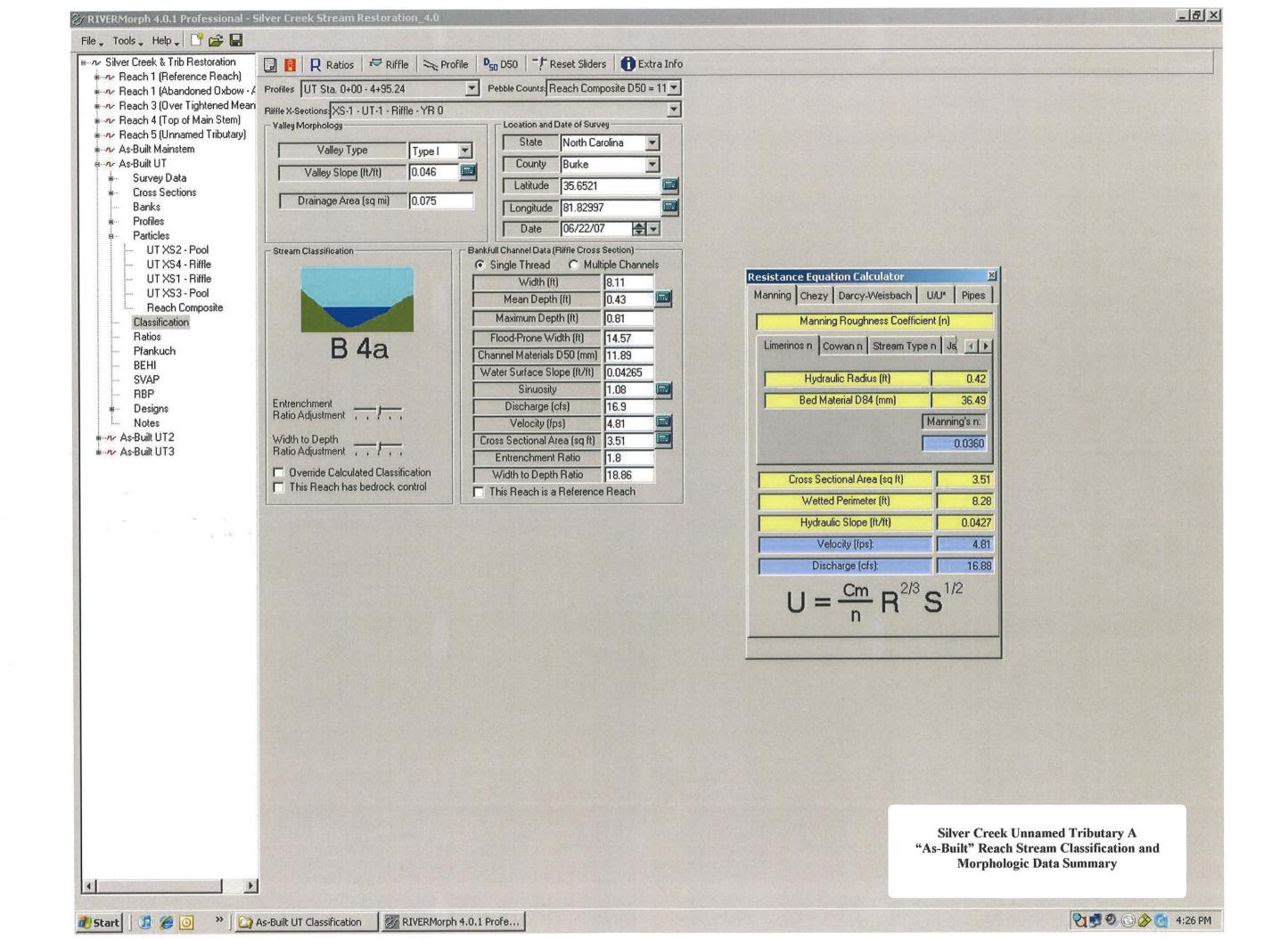



Mitigation Plan – Silver Creek Restoration

Appendix E Supporting Documentation


| ⊘RIVERMorph 4.0.1 Professional - Si                          | ver Creek Stream Restoration_4.0                                                                               |                                                                 |        |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|
| File 🗸 Tools 🗸 Help 🗸 📑 🚅                                    |                                                                                                                |                                                                 |        |
| 🔋 🔋 🕸 Reach 1 (Reference Reach)                              | 🗒 📕 🛛 🤂 Ratios 🛛 🚧 Riffle 🛛 🛬 Prof                                                                             |                                                                 |        |
|                                                              | Profiles Ref Reach Long Pro                                                                                    | Pebble Counts: Composite D50 = 27.73 mm                         |        |
| Cross Sections     Riffle Section 0+22                       | Riffle X-Sections Riffle Section 0+22                                                                          |                                                                 |        |
| Pool Section 3+20                                            | Valley Morphology                                                                                              | Location and Date of Survey State North Carolina                |        |
| Banks                                                        | Valley Type VIII                                                                                               |                                                                 |        |
| e Profiles<br>Ref Reach Long Pro                             | Valley Slope (ft/ft) 0.0138                                                                                    | County Burke                                                    |        |
| e Particles                                                  | Drainage Area (sq mi) 1.16                                                                                     | Latitude 35.61861                                               |        |
| Riffle X-S 0+22                                              |                                                                                                                | Longitude 81.81694                                              |        |
| Pool X-S 3+20<br>Composite                                   |                                                                                                                | Date 01/13/06                                                   |        |
| Classification                                               | Stream Classification                                                                                          | Bankfull Channel Data (Riffle Cross Section)                    |        |
| - Ratios                                                     |                                                                                                                | Single Thread C Multiple Channels                               |        |
| - Pfankuch<br>- BEHI                                         |                                                                                                                | Width (ft) 24.02                                                |        |
| SVAP                                                         |                                                                                                                | Mean Depth (ft) 1.28                                            |        |
| - BBP                                                        |                                                                                                                | Maximum Depth (ft) 1.72                                         |        |
| e Designs<br>NCD                                             | C4                                                                                                             | Flood-Prone Width (ft) 232                                      |        |
| Vanes                                                        | U T                                                                                                            | Channel Materials D50 (mm) 38.5                                 |        |
| Notes                                                        |                                                                                                                | Water Surface Slope (ft/ft)     0.01149       Sinuosity     1.2 |        |
| Reach 1 (Abandoned Oxbow - A<br>Reach 3 (Over Tightened Mean | Entrenchment                                                                                                   | Discharge (cfs) 98.16                                           |        |
| Reach 4 (Top of Main Stem)                                   | Ratio Adjustment                                                                                               | Velocity (fps) 3.19                                             |        |
| Reach 5 (Unnamed Tributary)                                  | Width to Depth                                                                                                 | Cross Sectional Area (sq ft) 30.77                              |        |
| and As-Built Mainstem                                        | Ratio Adjustment                                                                                               | Entrenchment Ratio 9.66                                         |        |
| a⊷n- As-Built UT-A<br>a⊷n- As-Built UT2                      | Override Calculated Classification                                                                             | Width to Depth Ratio 18.77                                      |        |
| As-Built UT3                                                 | This Reach has bedrock control                                                                                 | ☑ This Reach is a Reference Reach                               |        |
|                                                              | The second s |                                                                 |        |
| a de de                                                      |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
| 1 1                                                          |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 |        |
|                                                              |                                                                                                                |                                                                 | Br     |
|                                                              |                                                                                                                |                                                                 | Stream |


Þ


>> ] 💽 Inbox - Microsoft Outlook 🛛 🌌 RIVERMorph 4.0.1 Profe...

4


趙 Start 🛛 🎜 🏉 💽







| Burner Silver Creek & Trib Restoration        | 📴 🚦 🛛 🧛 Ratios 🛛 😾 Riffle 🛛 🛼 Prof                                                             | le DSD D50 Theset Sliders                                                                                                                                                                                                                                                                                                                               |                      |
|-----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Burny Reach 1 (Abandoned Oxbow - A            | Profiles Silver Ck Altered Profile - Station 12+                                               | Pebble Counts:                                                                                                                                                                                                                                                                                                                                          |                      |
|                                               | Drainage Area (sq mi) 8.01<br>Stream Classification<br>F 4<br>Entrenchment<br>Ratio Adjustment | County Burke   Latitude 35.6186   Longitude 81.816   Date 02/08/06   Date 02/08/06   Single Thread Multiple Channels   Width (ft) 122.47   Mean Depth (ft) 1.88   Maximum Depth (ft) 7.62   Flood-Prone Width (ft) 84   Channel Materials D50 (mm) 38.5   Water Surface Slope (ft/ft) 0.00218   Sinuosity 1   Discharge (cfs) 461   Velocity (fps) 1.46 |                      |
|                                               | Width to Depth<br>Ratio Adjustment                                                             | Cross Sectional Area (sq ft)       230.44         Entrenchment Ratio       0.69         Width to Depth Ratio       65.14         This Reach is a Reference Reach                                                                                                                                                                                        |                      |
| 4         ▶           Ø Start         Ø Ø Ø N |                                                                                                | litions M5 C                                                                                                                                                                                                                                                                                                                                            | Silver<br>Stream Cla |



## Brindle Creek Reference Reach Stream Classification and Morphologic Data Summary

| Stream NAME:                                                                           | Silver Creek & Tril                                                    | b Restoration, Reac   | h - Reach 1 (Reference                        | Reach)                                      |                         |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|-----------------------------------------------|---------------------------------------------|-------------------------|
| Basin NAME:                                                                            | Catawba River                                                          |                       | Drainage AREA:                                | 742.4 acre                                  | $1.16 \text{ mi}^2$     |
| Location: Brindle                                                                      | Creek of Silver Creek                                                  | k, Burke County, N    | orth Carolina                                 |                                             |                         |
| Twp:                                                                                   | Rge:                                                                   | Sec:                  | Qtr:                                          | Lat: 35.6186                                | Long: 81.817            |
| Observers:                                                                             | Miles F. Hebert, Pl                                                    | E and Warren E. Kr    | notts, PG                                     | Date:                                       | 1/13/2006               |
| Bankfull WID<br>WIDTH of the str                                                       | D <b>TH (W<sub>bkf</sub>)</b><br>ream channel, at bankf                | full stage elevation, | in a riffle section.                          |                                             | 24.02 Feet              |
| Mean DEPTH<br>Mean DEPTH of<br>(d <sub>bkf</sub> =A <sub>bkf</sub> /W <sub>bkf</sub> ) | · ····                                                                 | oss-section, at bank  | full stage elevation, in                      | a riffle section.                           | 1.28 Feet               |
|                                                                                        | ss Section Area (A<br>am channel cross-sect                            |                       | ge elevation, in a riffle                     | section.                                    | 30.77 Feet <sup>2</sup> |
|                                                                                        | PTH RATIO (W <sub>1</sub><br>divided by bankfull r                     |                       | riffle section.                               |                                             | 18.77 Ft/Ft             |
| <b>Maximum DH</b><br>Maximum depth<br>thalweg in a riffle                              | of the bankfull channe                                                 | el cross-section, or  | elevation between the b                       | pankfull stage and                          | 1.72 Feet               |
|                                                                                        |                                                                        |                       | determined in a riffle se                     | ection at twice                             | 232 Feet                |
|                                                                                        | <b>t RATIO (ER)</b><br>I-prone area WIDTH o                            | divided by bankfull   | channel WIDTH (W <sub>fpa</sub>               | /W <sub>bkf</sub> ) in a riffle             | 9.66 Ft/Ft              |
| The 50th percent                                                                       | erials (Particle Si<br>ile, or less than, from<br>nedian or dominant p | a pebble count freq   | uency distribution of c                       | hannel particles                            | <u>38.5</u> mm          |
| Average water su                                                                       | e SLOPE (S)<br>rface slope as measur<br>r wave lengths. This i         |                       | e position of bed featu<br>bankfull slope.    | res in the profile                          | 0.01149 Ft/Ft           |
|                                                                                        | • •                                                                    |                       | tream length / valley le<br>el slope (VS/ S). | ngth, i.e. (SL/VL);                         | <u>1.2</u>              |
| Stre                                                                                   | am Type                                                                |                       | C 4                                           | For Reference, see<br>Rosgen, 1996. Applied |                         |

## Brindle Creek Reference Reach Stream Classification and Morphologic Data Summary

ł

|                   | Mean Riffle Depth (d                                               | l <sub>bkf</sub> ) 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet Mean                                             | Riffle Width (V                                                                                                           | V <sub>bkf</sub> ) 24.02                | feet Mean                                            | Riffle Area (A                 | $A_{bkf}$ 30.77 feet <sup>2</sup>          |  |
|-------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------------------|--|
| Ę                 | Mean Pool Depth (d <sub>b</sub>                                    | <sub>kfp</sub> ) 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet Mean                                             | Pool Width (W                                                                                                             | <sub>bkfp</sub> ) 26.97                 | feet Mean                                            | Pool Area (A <sub>l</sub>      | <sub>bkfp</sub> ) 62.77 feet <sup>2</sup>  |  |
| Channel Dimension | Ratio Mean Pool<br>Depth/Mean Riffle D                             | epth 1.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d <sub>bkfp</sub> / Ratio I<br>d <sub>bkf</sub> Width | Pool Width/Rif                                                                                                            | i 1 123 i                               | W <sub>bkfp</sub> / Ratio<br>W <sub>bkf</sub> Riffle |                                | 2.040 Abkfp/<br>Abkf                       |  |
| lel D             | Max Riffle Depth (d <sub>n</sub>                                   | nrif) 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet Max P                                            | ool Depth (d <sub>mp</sub>                                                                                                | <sub>ool</sub> ) 3.76                   | feet Max r                                           | iffle depth/Me                 | ean riffle depth 1.883                     |  |
| hanr              | Max pool depth/Mea                                                 | n riffle depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.938                                                 |                                                                                                                           |                                         | Point                                                | Bar Slope                      | 0.01                                       |  |
| U<br>U            | Streamflow: Estimate                                               | ed Mean Velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | city at Bankfu                                        | ull Stage (u <sub>bk</sub> )                                                                                              | 3.19                                    | ft/s Estim                                           | ation Method                   | Manning's Equation                         |  |
| )                 | Streamflow: Estimate                                               | ed Discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at Bankfull St                                        | age (Q <sub>bk</sub> )                                                                                                    | 98.16                                   | cfs Drain                                            | age Area                       | 1.16 mi <sup>2</sup>                       |  |
|                   | Geometry                                                           | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min Max                                               |                                                                                                                           | Dimensionle                             | ss Geometry                                          | Ratios                         | Ave Min Max                                |  |
| E                 | Meander Length (Lrr                                                | THE REPORT OF A PARTY | 88.23 115.7                                           |                                                                                                                           | er Length Rat                           |                                                      | Autros                         | 4.361 3.673 4.816                          |  |
| Channel Pattern   | Radius of Curvature                                                | (Rc) 17.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.97 24.44                                           | feet Radius                                                                                                               | 0.736 0.540 1.017                       |                                                      |                                |                                            |  |
| nel F             | Belt Width (W <sub>blt</sub> )                                     | 45.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.17 46.5                                            | 46.5         feet         Meander Width Ratio (W <sub>bl/</sub> /W <sub>bkf</sub> )         1.883         1.839         1 |                                         |                                                      |                                |                                            |  |
| ;han              | Individual Pool Leng                                               | gth 17.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.01 31.56                                           | 1.56         Feet         Pool Length/Riffle Width         0.725         0.458         1.2                                |                                         |                                                      |                                |                                            |  |
| U                 | Pool to Pool Spacing                                               | 71.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.6 77.5                                             | feet Pool to                                                                                                              | Pool Spacing                            | z/Riffle Width                                       | l                              | 2.971 2.814 3.226                          |  |
|                   | Valley Slope (VS)                                                  | 0.0138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft/ft Avera                                           | ge Water Surfa                                                                                                            | ce Slone (S)                            | 0.01149                                              | ft/ft Sinuc                    | osity (VS/S) 1.2                           |  |
|                   | Stream Length (SL)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | v Length (VL)                                                                                                             | ce 310pe (3)                            | 294                                                  |                                | osity (SL/VL)   1.201                      |  |
|                   | Low Bank Height                                                    | start 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | fax Riffle                                                                                                                | start 1.62                              |                                                      | ank Height R                   |                                            |  |
|                   | (LBH)                                                              | end 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | Depth                                                                                                                     |                                         | . –                                                  | H/Max Riffle                   |                                            |  |
|                   | Facet Slopes                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max                                                   |                                                                                                                           |                                         | s Slope Ratio                                        |                                | Ave Min Max                                |  |
|                   |                                                                    | 0.0246 0.0172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Riffle Slope/A                                                                                                            |                                         | -                                                    |                                | 2.144 1.500 3.008                          |  |
| Channel Profile   |                                                                    | 0.0211 0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Run Slope/Av                                                                                                              |                                         |                                                      |                                | 1.838 1.088 3.150                          |  |
| nel F             |                                                                    | 0.0043 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | Pool Slope/Av                                                                                                             | _                                       |                                                      |                                | 0.372 0.086 0.824                          |  |
| Chan              |                                                                    | 0.0053 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                     | Glide Slope/A                                                                                                             |                                         |                                                      |                                | 0.460 0.173 0.655                          |  |
| U                 | Feature Midpoint <sup>*</sup><br>Riffle Depth (d <sub>mrif</sub> ) | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | Riffle Max De                                                                                                             | 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • | s Depth Rati<br>ean Depth (d                         |                                | Ave Min Max<br>1.883 1.883 1.883           |  |
|                   | Run Depth (d <sub>mrun</sub> )                                     | 2.300 1.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | en en fer en sel par a sel par ce i de l'arritecter   | Run Max Dep                                                                                                               |                                         |                                                      | 201101222012070707070707070707 | 1.797 1.461 2.000                          |  |
|                   | Pool Depth (d <sub>mp</sub> )                                      | 3.760 3.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | Pool Max Dep                                                                                                              |                                         |                                                      |                                | 2.938 2.938 2.938                          |  |
|                   | Glide Depth (d <sub>mp</sub> )                                     | 2.210 1.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mounneidererer                                        | Glide Max De                                                                                                              |                                         |                                                      |                                | 1.727 1.281 2.109                          |  |
|                   | Cinae Depui (a <sub>mg</sub> )                                     | 1 2.210 1.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                           |                                         | ean Depin (an                                        | ig «bkD                        |                                            |  |
|                   | Catagories                                                         | Reach <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Riffle°                                               | Bar                                                                                                                       | Indices                                 | 1                                                    | Riffle                         | Ba                                         |  |
| ials              | % Silt/Clay                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                     |                                                                                                                           | D16                                     |                                                      | 19.96                          |                                            |  |
| Channel Materials | % Sand                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     |                                                                                                                           | D35                                     | 18.64                                                | 29.65                          | imm in |  |
| lel M             | % Gravel                                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                                                    |                                                                                                                           | D50                                     | 27.73                                                | 38.5                           | immi                                       |  |
| hanr              | % Cobble                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                    |                                                                                                                           | D84                                     | 58.3                                                 | 60.2                           | mm                                         |  |
| ပ                 | % Boulder                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                     |                                                                                                                           | D95                                     |                                                      | 77                             | mm                                         |  |
|                   | % Bedrock                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                     |                                                                                                                           | D100                                    | 179.99                                               | 90                             | mm                                         |  |

a. The range of "feature" mid-point maximum bankfull depths, including the minimum, maximum and average values.

(Pool depths are obtained from the deepest portion of the feature.)

b. A composite sample of materials from riffle and pool featutes taken within the designated reach.

c. Sample obtained within the "active" bed of a riffle feature at the location of the cross section.

# Silver Creek Altered Reach Stream Classification and Morphologic Data Summary

|                                                                                        |                                                                                                      |                             | ·····                                             |                                            |                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|--------------------------------------------|-------------------|
| Stream NAME:                                                                           | Silver Creek & Trib Restorat                                                                         | ion, Reach - Reach 1 (      | Abandoned Oxbow -                                 |                                            |                   |
| Basin NAME:                                                                            | Catawba River                                                                                        |                             | e AREA: <u>5126.4</u> ac                          |                                            | mi <sup>2</sup>   |
| Location: Silver (                                                                     | Creek, Abandoned Oxbow, Que                                                                          | en/Conway Property, E       |                                                   |                                            |                   |
| Twp:                                                                                   | Rge: Sec                                                                                             | <u> </u>                    | Lat:                                              | 35.6186 Long:                              | 81.816            |
| Observers:                                                                             | Warren E. Knotts, P.G. and S                                                                         | Sean Peffer, Env. Sci.      |                                                   | Date:                                      | 2/8/200           |
| Bankfull WID<br>WIDTH of the str                                                       | <b>PTH (W<sub>bkf</sub>)</b><br>eam channel, at bankfull stage e                                     | elevation, in a riffle sec  | tion.                                             | 123.41                                     | Feet              |
| Mean DEPTH<br>Mean DEPTH of<br>(d <sub>bkf</sub> =A <sub>bkf</sub> /W <sub>bkf</sub> ) | l (d <sub>bkf</sub> )<br>the stream channel cross-section                                            | n, at bankfull stage elev   | vation, in a riffle section                       |                                            | Feet              |
|                                                                                        | am channel cross-section, at bar                                                                     | nkfull stage elevation, i   | n a riffle section.                               | 225.53                                     | Feet <sup>2</sup> |
|                                                                                        | <b>PTH RATIO (W<sub>bkf</sub> /d<sub>bkf</sub>)</b><br>divided by bankfull mean DEP                  | TH, in a riffle section.    |                                                   | 67.44                                      | Ft/Ft             |
| Maximum DH<br>Maximum depth<br>thalweg in a riffle                                     | of the bankfull channel cross-se                                                                     | ction, or elevation betw    | veen the bankfull stag                            |                                            | Feet              |
|                                                                                        | Area WIDTH (W <sub>fpa</sub> )<br>on at which flood-prone area W<br>H, or (2 x d <sub>mri</sub> )    | IDTH is determined in       | a riffle section at twic                          | •                                          | Feet              |
|                                                                                        | t RATIO (ER)<br>-prone area WIDTH divided by                                                         | / bankfull channel WII      | DTH (W <sub>fpa</sub> /W <sub>bkf</sub> ) in a ri |                                            | §_Ft/Ft           |
| The 50th percenti                                                                      | erials (Particle Size Index<br>le, or less than, from a pebble c<br>nedian or dominant particle size | ount frequency distribution | ution of channel partic                           |                                            | 5_mm              |
| _                                                                                      | e SLOPE (S)<br>rface slope as measured betwee<br>r wave lengths. This is similar to                  | -                           | -                                                 | 0.00218                                    | <u>3</u> Ft/Ft    |
|                                                                                        | J <b>OSITY (K)</b><br>ex of channel pattern, determine<br>a ratio of valley slope divided            |                             |                                                   |                                            | L                 |
| Stre                                                                                   | am Type                                                                                              | F 4                         |                                                   | rence, see page 5-5<br>6. Applied River Mo |                   |

## Silver Creek Altered Reach Stream Classification and Morphologic Data Summary

|                   |                                                                    |                                                                                                        |                |                  |                                          |                                        | - unit y                  |                        |                                    |                                                                                                                 |          |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|------------------|------------------------------------------|----------------------------------------|---------------------------|------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Mean Riffle Depth (d                                               |                                                                                                        | 3.95           | feet             | Mean Rif                                 | fle W                                  | idth (W <sub>bkt</sub> )  | 60.86                  | feet                               | Mean                                                                                                            | Riffle / | Area (A              | ьњ <i>г</i> ) | 230.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ω                 | Mean Pool Depth (db                                                |                                                                                                        | 4.54           |                  |                                          |                                        | dth (W <sub>bkfp</sub> )  | 72.2                   |                                    |                                                                                                                 |          | rea (A <sub>bl</sub> | SSERVER AND A | 327.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lsion             | Ratio Mean Pool                                                    | ni anter                                                                                               | .149           |                  | Ratio Poo                                |                                        |                           |                        | W                                  |                                                                                                                 | Pool Ai  |                      | (ip) :        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A <sub>bkfp</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dimension         | Depth/Mean Riffle D                                                | epth <sup>1</sup>                                                                                      | .149           | d <sub>bkf</sub> | Width                                    |                                        |                           | 1.186                  | W <sub>bkf</sub>                   | Riffle                                                                                                          |          |                      |               | 1.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A <sub>bkf</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nel D             | Max Riffle Depth (d <sub>r</sub>                                   | nrif)                                                                                                  | 7.04           | feet             | Max Pool                                 | Dep                                    | th (d <sub>mpool</sub> )  | 7.12                   | feet                               | Max r                                                                                                           | iffle de | pth/Me               | an riffle     | depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Channel           | Max pool depth/Mea                                                 | n riffle d                                                                                             | lepth          | 1.803            |                                          |                                        |                           |                        |                                    | Point                                                                                                           | Bar Slo  | pe                   | l             | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Streamflow: Estimate                                               | reamflow: Estimated Mean Velocity at Bankfull Stage (ubid) 1.46 ft/s Estimation Method Reference Reach |                |                  |                                          |                                        |                           | h & Re                 |                                    |                                                                                                                 |          |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Streamflow: Estimate                                               | ed Disch                                                                                               | arge a         | at Bank          | full Stage                               | e (Q <sub>bk</sub>                     | )                         | 461                    | cfs                                | Draina                                                                                                          | ige Are  | a                    |               | 8.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12 CS101          | Geometry                                                           |                                                                                                        | Ave            | Min              | Max                                      |                                        | Dime                      | ncionle                | ss Geo                             | metm                                                                                                            | Pating   |                      | Ave           | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E                 | Meander Length (Ln                                                 |                                                                                                        | 130            | 70<br>70         |                                          | et I                                   | Meander Len               |                        |                                    |                                                                                                                 | IXALIUS  |                      | 2.136         | 1.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 TO |
| Pattern           | Radius of Curvature                                                | (Rc)                                                                                                   | 90             | 50               | 170 fee                                  | 0 feet Radius of Curvature/Riffle      |                           |                        | Width (Rc/W <sub>bkf</sub> ) 1.479 |                                                                                                                 |          | 0.822                | 2.793         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Belt Width (W <sub>blt</sub> )                                     |                                                                                                        | 60             | 37               | 84 fee                                   | et I                                   | Meander Wic               | lth Rati               | o (W <sub>blt</sub>                | /W <sub>bkf</sub> )                                                                                             |          |                      | 0.986         | 0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Channel           | Individual Pool Leng                                               | gth 2                                                                                                  | 26.29          | 20.09            | 36.05 fee                                |                                        |                           |                        |                                    |                                                                                                                 |          | 0.330                | 0.592         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Box$            | Pool to Pool Spacing                                               | , []                                                                                                   | 129.1          | 101.1            | 149 fee                                  | feet Pool to Pool Spacing/Riffle Width |                           |                        |                                    | 2.121                                                                                                           | 1.661    | 2.448                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Valley Slope (VS)                                                  | 0.003                                                                                                  | 7              | ft/ft            | Aueroga                                  | Wata                                   | r Surface Slo             | na (S)                 | 1 0.04                             | 0218                                                                                                            | ft/ft    | Ginuo                | sity (VS      | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Stream Length (SL)                                                 | 278                                                                                                    |                | feet             | Valley Le                                |                                        | endelantitet keltikasinak | pe (S)                 | :<br>                              | 78                                                                                                              | feet     | 1                    | sity (VS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Low Bank Height                                                    | start                                                                                                  | 7.12           |                  |                                          | Riffl                                  |                           | 1 83                   | feet                               | lenia della della                                                                                               | <u>.</u> | ight Ra              |               | unuunau prof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (LBH)                                                              | end                                                                                                    | 7.45           |                  |                                          | epth                                   | end                       |                        | feet                               |                                                                                                                 |          | Riffle I             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Facet Slopes                                                       |                                                                                                        |                | Max              |                                          |                                        | Dimen                     |                        |                                    |                                                                                                                 |          |                      | Ave           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| െ                 |                                                                    | 0.0069 0.                                                                                              |                |                  |                                          |                                        | lope/Averag               |                        |                                    | en an de la composition de la compositi |          |                      | 3.165         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Profile           |                                                                    | 0.0014 0.                                                                                              |                |                  |                                          | ~~~~~                                  | ope/Average               |                        |                                    | -                                                                                                               |          |                      | 0.619         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nel F             |                                                                    | 0.0026 0.                                                                                              |                |                  |                                          |                                        | ope/Average               |                        |                                    | Â                                                                                                               | ·        |                      | 1.170         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Channel           | <u> </u>                                                           | 0.0119 0.                                                                                              |                |                  | ft/ft G                                  | lide S                                 | lope/Average              |                        |                                    | -                                                                                                               |          | )                    | 5.440         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9                 | Feature Midpoint <sup>®</sup><br>Riffle Depth (d <sub>nuif</sub> ) |                                                                                                        | *****          | Max<br>7.620     | feet Ri                                  | iffle N                                | Dimen<br>Max Depth/R      | O Marte Teller College | TAX TO TAX TO TAX TO TAX TO TAX    |                                                                                                                 |          |                      | Ave 1.782     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max<br>1.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | Run Depth (d <sub>mrun</sub> )                                     | 4.940                                                                                                  |                |                  |                                          | i (an in the second                    | ax Depth/Rif              |                        |                                    |                                                                                                                 |          |                      |               | icitate i cintrarra:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Pool Depth (d <sub>mp</sub> )                                      | 7.120                                                                                                  |                |                  | alaan ahaa ahaa ahaa ahaa ahaa ahaa ahaa |                                        | ax Depth/Ril              |                        |                                    | up net to the                                                                                                   |          |                      | 1.803         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Glide Depth (d <sub>mg</sub> )                                     | 0.000                                                                                                  |                |                  |                                          |                                        | /lax Depth/R              | ******                 |                                    | erus erus erus erus erus erus erus erus                                                                         |          |                      | 0.000         | 8131.82.88.88.88.88.89.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                    |                                                                                                        |                |                  | 1                                        |                                        |                           |                        | 10040000000<br>50400000000         |                                                                                                                 | g – UKD  |                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Catagories                                                         | Reac                                                                                                   | h <sup>b</sup> |                  | ffle <sup>c</sup>                        | Ba                                     | ur<br>L                   | Indice                 | s Re                               | ach <sup>b</sup>                                                                                                | 1        | ffle <sup>c</sup>    | B             | ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 'ials             | % Silt/Clay                                                        |                                                                                                        |                |                  |                                          |                                        |                           | D16                    |                                    |                                                                                                                 |          | 3.6                  | <br>T         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Channel Materials | % Sand                                                             |                                                                                                        |                |                  | 0                                        |                                        |                           | D35                    |                                    |                                                                                                                 | 1        | '.42                 | <br>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nel 1             | % Gravel                                                           |                                                                                                        |                |                  | 00                                       |                                        |                           | D50                    |                                    |                                                                                                                 |          | 2.87                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ;han              | % Cobble                                                           |                                                                                                        |                |                  | 0                                        |                                        |                           | D84                    |                                    |                                                                                                                 |          | 0.62                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ľ                 | % Boulder                                                          |                                                                                                        |                |                  | 0                                        |                                        |                           | D95                    |                                    |                                                                                                                 | 4        | 27.3                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | % Bedrock                                                          |                                                                                                        |                |                  | 0                                        |                                        |                           | D100                   |                                    |                                                                                                                 |          | 32                   |               | 107 <b>-</b> 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 - 107 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

a. The range of "feature" mid-point maximum bankfull depths, including the minimum, maximum and average values.

(Pool depths are obtained from the deepest portion of the feature.)

b. A composite sample of materials from riffle and pool features taken within the designated reach.

c. Sample obtained within the "active" bed of a riffle feature at the location of the cross section.

## Silver Creek "As-Built" Reach Stream Classification and Morphologic Data Summary

|                                                                                          | <ul> <li>A Constraint of Article Artis Article Article Article Article Article Article Article Art</li></ul> |                        |                                             | ****                                   |                              |         |                   |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|----------------------------------------|------------------------------|---------|-------------------|
| Stream NAME:                                                                             | Silver Creek & Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ib Restoration, Reac   | h - As-Built Mainster                       | n                                      |                              |         |                   |
| Basin NAME:                                                                              | Catawba River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Drainage AREA                               | : <u>5126.4</u> a                      | acre _                       | 8.01    | mi <sup>2</sup>   |
| Location: Silver C                                                                       | reek, Burke County,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                             |                                        | <u> </u>                     |         |                   |
| Тwp:                                                                                     | Rge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sec:                   | Qtr:                                        | _ Lat: _                               | 35.6186                      | Long:   | 81.816            |
| Observers:                                                                               | Jud M. Hines, P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . and Warren E. Kno    | otts, P.G.                                  |                                        | Date:                        | 7       | /18/2007          |
| <b>Bankfull WID</b><br>WIDTH of the stre                                                 | TH (W <sub>bk1</sub> )<br>eam channel, at bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | full stage elevation,  | in a riffle section.                        |                                        |                              | 69.81   | Feet              |
| Mean DEPTH<br>Mean DEPTH of (<br>(d <sub>bkf</sub> =A <sub>bkf</sub> /W <sub>bkf</sub> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oss-section, at bank   | full stage elevation, in                    | n a riffle sect                        | tion.                        | 1.48    | Feet              |
|                                                                                          | s Section Area (A<br>am channel cross-sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                      | e elevation, in a riffle                    | e section.                             |                              | 103.55  | Feet <sup>2</sup> |
|                                                                                          | PTH RATIO (W<br>divided by bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | riffle section.                             |                                        |                              | 47.17   | Ft/Ft             |
| Maximum DE<br>Maximum depth o<br>thalweg in a riffle                                     | of the bankfull chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el cross-section, or e | elevation between the                       | bankfull sta                           | ge and                       | 2.8     | Feet              |
|                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | letermined in a riffle                      | section at tw                          | rice -                       | 114.45  | Feet              |
|                                                                                          | t <b>RATIO (ER)</b><br>-prone area WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | divided by bankfull    | channel WIDTH (W                            | <sub>pa</sub> /W <sub>bkf</sub> ) in a | riffle -                     | 1.64    | Ft/Ft             |
| The 50th percenti                                                                        | erials (Particle Si<br>le, or less than, from<br>nedian or dominant p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a pebble count freq    | uency distribution of                       | channel part                           | icles                        | 2.79    | mm                |
|                                                                                          | ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | e position of bed feat<br>bankfull slope.   | tures in the p                         | rofile                       | 0.00265 | Ft/Ft             |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | ream length / valley l<br>el slope (VS/ S). | length, i.e. (S                        | -<br>SL/VL);                 | 1.4     | -                 |
| Strea                                                                                    | ат Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | B 4c                                        |                                        | ference, see<br>996. Applied |         |                   |

## Silver Creek "As-Built" Reach Stream Classification and Morphologic Data Summary

| Mean Riffle Depth (d <sub>bkf</sub> ) 1.57 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Moon Biffle Donth (d ) 1 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
| Mean Kinne Depui (ubkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eet Mean Riffle V                                      | Vidth (W <sub>bkf</sub> ) 61.7 feet                     | Mean Riffle Area (A                                                                                            | vokt) 103.6 feet <sup>2</sup>            |  |  |  |
| Mean Pool Depth (d <sub>bkfp</sub> ) 1.81 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eet Mean Pool W                                        | idth (W <sub>bkfp</sub> ) 56.03 feet                    | Mean Pool Area (At                                                                                             | <sub>kfp</sub> ) 97.48 feet <sup>2</sup> |  |  |  |
| יווייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sub>bkfp</sub> / Ratio Pool W<br><sub>bkf</sub> Width | idth/Riffle 0.908 W <sub>bkfj</sub><br>W <sub>bkf</sub> | / Ratio Pool Area/<br>Riffle Area                                                                              | 0.941 Abkfp/<br>Abkf                     |  |  |  |
| $\begin{array}{c} \underline{\Box} \\ \underline{\Box} \\ \underline{\Box} \\ \underline{\Box} \end{array} \end{array} \qquad \begin{array}{c} \underline{D} \\ \underline{D} \\ \underline{D} \\ \underline{D} \end{array} \qquad \begin{array}{c} \underline{D} \\ $ |                                                        |                                                         |                                                                                                                | an riffle depth 2.159                    |  |  |  |
| Max pool depth/Mean riffle depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                         | Point Bar Slope                                                                                                | 0.01                                     |  |  |  |
| Streamflow: Estimated Mean Veloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | e (u <sub>bk</sub> ) 3.65 ft/s                          | Estimation Method                                                                                              | Manning's Equation                       |  |  |  |
| Streamflow: Estimated Discharge at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |                                                         | Drainage Area                                                                                                  | 8.01 mi <sup>2</sup>                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
| GeometryAveMinMaxDimensionlessGeometryRatiosAveMinMaxCMeander Length (Lm)124.973.79191.7feetMeander Length Ratio (Lm/W <sub>bk</sub> )2.0241.1963.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
| Radius of Curvature (Rc) 68.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.07 185.4 feet                                       | Radius of Curvature/Riffle                              |                                                                                                                | 1.113 0.747 3.005                        |  |  |  |
| l č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82.81 181.9 feet                                       |                                                         |                                                                                                                | 1.779 1.342 2.949                        |  |  |  |
| Individual Pool Length 35.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Pool to Pool Spacing/Riff                               | 2.359 0.590 6.294                                                                                              |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                         |                                                                                                                |                                          |  |  |  |
| Valley Slope (VS) 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t/ft Average Wat                                       | er Surface Slope (S) 0                                  | .00265 ft/ft Sinuo                                                                                             | sity (VS/S) 1.4                          |  |  |  |
| Stream Length (SL) 2905.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eet Valley Lengt                                       | n (VL) 20                                               | 076.51 feet Sinuo                                                                                              | sity (SL/VL) 1.399                       |  |  |  |
| Low Bank Height start 2.59<br>(LBH) end 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1020011012                                             | ij                                                      | Bank Height R<br>(LBH/Max Riffle )                                                                             |                                          |  |  |  |
| (LBH) end 3.84   1<br>Facet Slopes Ave Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | end 3.75 feet Dimensionless Slo                         |                                                                                                                | Depth) end 1.024<br>Ave Min Max          |  |  |  |
| Riffle Slope $(S_{rif})$ 0.0242 0.0039 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | Slope/Average Water Surf                                |                                                                                                                | 9.147 1.468 67.423                       |  |  |  |
| B Run Slope (S <sub>run</sub> ) 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ).0000 ft/ft Run S                                     | lope/Average Water Surfa                                | ce Slope (S <sub>run</sub> /S)                                                                                 | 0.000 0.000 0.000                        |  |  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0020 ft/ft Pool S                                    | lope/Average Water Surfa                                | ace Slope (S <sub>p</sub> /S)                                                                                  | 0.260 0.000 0.751                        |  |  |  |
| Glide Slope (Sg) 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ).0000 ft/ft Glide                                     | Slope/Average Water Surf                                | ace Slope (S <sub>g</sub> /S)                                                                                  | 0.000 0.000 0.000                        |  |  |  |
| reaure mupointrec_mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | Dimensionless Dep                                       | The second s | Ave Min Max                              |  |  |  |
| Riffle Depth (d <sub>mif</sub> ) 3.390 2.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | Max Depth/Riffle Mean D                                 |                                                                                                                | 2.159 1.783 2.389                        |  |  |  |
| Run Depth (d <sub>mrun</sub> ) 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | Iax Depth/Riffle Mean De                                |                                                                                                                | 0.000 0.000 0.000                        |  |  |  |
| Pool Depth (d <sub>mp</sub> ) 4.700 3.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | Aax Depth/Riffle Mean De                                |                                                                                                                | 2.994 2.465 3.433                        |  |  |  |
| Glide Depth (d <sub>mg</sub> ) 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000 feet Glide                                       | Max Depth/Riffle Mean D                                 | Pepth (d <sub>mg</sub> /d <sub>bkf</sub> )                                                                     | 0.000 0.000 0.000                        |  |  |  |
| Catagories Reach <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Riffle° E                                              | ar Indices F                                            | Reach <sup>b</sup> Riffle <sup>c</sup>                                                                         | Bar                                      |  |  |  |
| % Silt/Clay 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | D16                                                     | 0.37 0.47                                                                                                      | mm                                       |  |  |  |
| % Sand 44.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.75                                                  | D35                                                     | 1.08 1.49                                                                                                      | mm                                       |  |  |  |
| or     76 Shirelay     0       weight     76 Shirelay     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.25                                                  | D50                                                     | 2.79 4.25                                                                                                      | mm                                       |  |  |  |
| E % Cobble 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                      | D84                                                     | 25.5 26.9                                                                                                      | mm                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 16+4+//142+64+247                                       |                                                                                                                |                                          |  |  |  |
| Boulder 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | D95                                                     | 29.97 30.41                                                                                                    | mm                                       |  |  |  |

a. The range of "feature" mid-point maximum bankfull depths, including the minimum, maximum and average values.

(Pool depths are obtained from the deepest portion of the feature.)

b. A composite sample of materials from riffle and pool featutes taken within the designated reach.

c. Sample obtained within the "active" bed of a riffle feature at the location of the cross section.

## Silver Creek Unnamed Tributary A "As-Built" Reach Stream Classification and Morphologic Data Summary

|                                                                                                 |                                                                                                      |                              | an An anana anana Andrik Manganga manana ana ana ana ana ana ana ana ana |                                        |                |                   |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|----------------------------------------|----------------|-------------------|
| Stream NAME:                                                                                    | Silver Creek & Trib Rest                                                                             | toration, Reach - As-Buil    | t UT                                                                     | ······································ |                |                   |
| Basin NAME:                                                                                     | Catawba River                                                                                        | Draina                       | ige AREA:                                                                | 48 acre                                | 0.075 n        | ni <sup>2</sup>   |
| Location: Unname                                                                                | d Tributary to Silver Creek                                                                          | , Burke County, North C      | Carolina                                                                 |                                        |                |                   |
| Twp:                                                                                            | Rge:                                                                                                 | Sec: Qtr                     | : L                                                                      | at: <u>35.6521</u>                     | Long:          | 81.83             |
| Observers:                                                                                      | Jud M. Hines, P.E. and V                                                                             | Warren E. Knotts, P.G.       |                                                                          | Date:                                  | 6/             | 22/2007           |
| Bankfull WID<br>WIDTH of the stre                                                               | TH (W <sub>bkf</sub> )<br>eam channel, at bankfull sta                                               | age elevation, in a riffle s | ection.                                                                  | <u></u>                                | <u>8.11</u> F  | eet               |
| <b>Mean DEPTH</b><br>Mean DEPTH of t<br>(d <sub>bkf</sub> =A <sub>bkf</sub> /W <sub>bkf</sub> ) | (d <sub>bkf</sub> )<br>he stream channel cross-sec                                                   | ction, at bankfull stage e   | levation, in a riffle                                                    | section.                               | 0.43 F         | Feet              |
|                                                                                                 | s Section Area (A <sub>bkf</sub> )<br>im channel cross-section, at                                   | t bankfull stage elevation   | , in a riffle section                                                    |                                        | <u>3.51</u> F  | -eet <sup>2</sup> |
|                                                                                                 | <b>PTH RATIO (W<sub>bkf</sub> /d<sub>t</sub></b><br>divided by bankfull mean I                       |                              | szerőikoponeusonomzer<br>n.                                              |                                        | <b>18.86</b> F | ₩Ft               |
| Maximum DE<br>Maximum depth o<br>thalweg in a riffle                                            | of the bankfull channel cros                                                                         | s-section, or elevation be   | etween the bankful                                                       | I stage and                            | <u>0.81</u> F  | -eet              |
|                                                                                                 | <b>Area WIDTH (W<sub>fpa</sub>)</b><br>n at which flood-prone area<br>H, or (2 x d <sub>mrit</sub> ) | a WIDTH is determined        | in a riffle section a                                                    | at twice                               | <u>14.57</u>   | Feet              |
| Entrenchment<br>The ratio of flood<br>section.                                                  | t <b>RATIO (ER)</b><br>-prone area WIDTH divided                                                     | d by bankfull channel W      | IDTH (W <sub>fpa</sub> /W <sub>bkf</sub> )                               | in a riffle                            | 1.8            | Ft/Ft             |
| The 50th percentil                                                                              | erials (Particle Size In<br>le, or less than, from a pebb<br>nedian or dominant particle             | ole count frequency distri   | bution of channel                                                        | particles                              | <u>11.89</u> ı | mm                |
|                                                                                                 | e SLOPE (S)<br>face slope as measured bet<br>wave lengths. This is simil                             | -                            |                                                                          | he profile                             | 0.04265        | Ft/Ft             |
|                                                                                                 | J <b>OSITY (K)</b><br>a ratio of valley slope divide                                                 |                              |                                                                          | e. (SL/VL);                            | 1.08           |                   |
| Strea                                                                                           | am Type                                                                                              | B 4a                         |                                                                          | r Reference, see<br>n, 1996. Applied   |                |                   |

## Silver Creek Unnamed Tributary A "As-Built" Reach Stream Classification and Morphologic Data Summary

|                   |                                                                                                                   |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . •                     |                                                |                      |                                                                                                                |                         | -                   |                         |            |                            |              |                          |                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|-------------------------|------------|----------------------------|--------------|--------------------------|-----------------------------------------|
|                   | Mean Riffle Depth (d                                                                                              | bkf)                        | 0.48 f                                   | eet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean Ri                 | iffle W                                        | 'idth (W             | V <sub>bkf</sub> )                                                                                             | 7.46                    | feet                | Mean l                  | Riffle 1   | Area (A                    | bkf)         | 3.51                     | feet <sup>2</sup>                       |
| с<br>Г            | Mean Pool Depth (d <sub>bl</sub>                                                                                  | <sub>kfp</sub> )            | 0.81 f                                   | eet ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean Po                 | ool Wi                                         | dth (W <sub>l</sub>  | <sub>bkfp</sub> )                                                                                              | 8.78                    | feet                | Mean Pool Area (Abkip)  |            |                            | (fp)         | 6.99                     | feet <sup>2</sup>                       |
| Dimension         | Ratio Mean Pool<br>Depth/Mean Riffle D                                                                            | epth 1                      |                                          | Durb 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio Po<br>Width       | ol Wi                                          | dth/Rifl             | fle                                                                                                            |                         | - Prop              | Ratio I<br>Riffle       |            | rea/                       |              |                          | A <sub>bkfp</sub> /<br>A <sub>bkf</sub> |
| nei D             | Max Riffle Depth (d <sub>n</sub>                                                                                  | uif)                        | 0.91 f                                   | eet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max Poo                 | ol Dep                                         | th (d <sub>mpo</sub> | <sub>001</sub> )                                                                                               | 1.51                    | feet                | Max ri                  | ffle de    | pth/Mea                    | an riffle    | depth                    | 1.896                                   |
| Channel           | Max pool depth/Mean riffle depth 3.146 Point Bar Slope 0                                                          |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      |                                                                                                                |                         |                     |                         |            |                            |              |                          |                                         |
| $\left[ \right]$  | Streamflow: Estimated Mean Velocity at Bankfull Stage $(u_{bk})$ 4.81 ft/s Estimation Method Manning's Equation   |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                | ition                |                                                                                                                |                         |                     |                         |            |                            |              |                          |                                         |
|                   | Streamflow: Estimated Discharge at Bankfull Stage (Q <sub>bk</sub> ) 16.9 cfs Drainage Area 0.075 mi <sup>2</sup> |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      | mi <sup>2</sup>                                                                                                |                         |                     |                         |            |                            |              |                          |                                         |
|                   | Geometry Ave Min Max Dimensionless Geometry Ratios Ave Min Max                                                    |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      |                                                                                                                |                         |                     |                         |            |                            |              |                          |                                         |
| Ω                 | Meander Length (Lm                                                                                                | AVA 300 000 00 0 0 0 0 /2 1 | 1 YO YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | Service and the service of the servi | 106.3 f                 | eet                                            | Meande               |                                                                                                                | a strate provide harden |                     |                         |            |                            | 9.882        | 7.885                    |                                         |
| Channel Pattern   | Radius of Curvature                                                                                               | (Rc) 2                      | 23.59                                    | 9.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 124.9 f                 | eet                                            | Radius               | of Cur                                                                                                         | vature/                 | Riffle `            | Width (                 | (Rc/W      | bkð                        | 3.162        | 1.249                    | 16.739                                  |
| nel F             | Belt Width (W <sub>blt</sub> )                                                                                    |                             | 12.95                                    | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.57 f                 | eet                                            | Meande               | er Wid                                                                                                         | th Ratio                | o (W <sub>blť</sub> | /W <sub>bkf</sub> )     |            |                            | 1.736        | 1.448                    | 1.953                                   |
| Shan              | Individual Pool Leng                                                                                              | th                          | 12.43                                    | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.79 f                 | èet                                            | Pool Le              | ength/I                                                                                                        | Riffle V                | Vidth               |                         |            |                            | 1.666        | 0.814                    | 3.055                                   |
| U                 | Pool to Pool Spacing                                                                                              |                             | 55.63                                    | 10.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 143.2 f                 | feet Pool to Pool Spacing/Riffle Width 7.457   |                      |                                                                                                                |                         |                     | 1.366                   | 19.193     |                            |              |                          |                                         |
|                   | Valley Slope (VS)                                                                                                 | 0.04                        | 6                                        | n∕n ∣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average                 | • Wate                                         | r Surfa              | ce Slor                                                                                                        | ne (S)                  | 0.04                | 4265                    | fi/ft      | Sinuo                      | sity (VS     | /S)                      | 1.08                                    |
|                   | Stream Length (SL)                                                                                                | 1542.                       | 14.5.4.4.4                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Valley I                |                                                |                      |                                                                                                                |                         |                     |                         | feet       |                            | sity (SL     | *****                    | 1.082                                   |
|                   | Low Bank Height                                                                                                   | start                       | 0.81                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | x Riff                                         |                      | start                                                                                                          | 0.81                    |                     |                         | 1          | eight Ra                   |              | start                    | 1                                       |
|                   | (LBH)                                                                                                             | end                         | 1.01                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Depth                                          | 10                   | end                                                                                                            | }                       |                     |                         |            | Riffle I                   |              | end                      | 1                                       |
|                   | Facet Slopes                                                                                                      | Ave                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ada sindi               |                                                |                      |                                                                                                                | sionles                 |                     | ^                       |            |                            | Ave          |                          | Max                                     |
| രി                |                                                                                                                   | 0.13890                     | aunn unión                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | **********                                     | Slope/A              |                                                                                                                |                         |                     |                         |            |                            | 3.257        |                          | 14.289                                  |
| rofil             |                                                                                                                   | 0.0000 0                    |                                          | aanaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                | ope/Av               |                                                                                                                |                         |                     |                         | 2245720119 |                            | 0.000        |                          | 0.000                                   |
| Channel Profile   |                                                                                                                   | 0.0019 0                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                       |                                                | lope/Av              |                                                                                                                |                         |                     |                         |            |                            |              |                          | 0.113                                   |
| Chan              |                                                                                                                   | 0.0000 0                    | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tt/tt                   | Jide S                                         | Slope/A              |                                                                                                                |                         |                     |                         |            | )                          | 0.000        |                          | 0.000                                   |
| Ľ                 | Feature Midpoint <sup>a</sup><br>Riffle Depth (d <sub>mrif</sub> )                                                | Ave<br>0.910                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet I                  | Riffle                                         | l<br>Max De          | ATALTO ALC: MAL                                                                                                | sionles:<br>iffle Mo    |                     | W THY AT AT A TATA TATA | A          |                            | Ave<br>1.896 | 6 mananan y papago 6 sub | Max<br>2.104                            |
|                   | Run Depth (d <sub>mrun</sub> )                                                                                    | 0.000                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | d Anno ann an | iax Dep              |                                                                                                                |                         | Maddagars           |                         |            |                            |              | 4.636) X 1011 X 10       | 0.000                                   |
|                   | Pool Depth (d <sub>mp</sub> )                                                                                     | 1.510                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | <u>.</u>                                       | lax Dep              |                                                                                                                |                         |                     | HEATING (               |            |                            |              |                          | 3.417                                   |
|                   | Glide Depth (d <sub>mg</sub> )                                                                                    | 0.000                       |                                          | 520200 K 1227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | (                                              | Max De               |                                                                                                                |                         |                     | *****                   |            |                            |              |                          | 0.000                                   |
|                   |                                                                                                                   |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      |                                                                                                                |                         |                     |                         |            |                            |              |                          |                                         |
|                   | Catagories                                                                                                        | Reac<br>6.6                 | ******                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | file <sup>e</sup><br>35 | В                                              | ar<br>ì              |                                                                                                                | Indices                 |                     | ach <sup>b</sup><br>.31 |            | iffle <sup>c</sup><br>0.52 | B            | ar                       | mm                                      |
| rials             | % Silt/Clay                                                                                                       | 6.6<br>24.1                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .49                     |                                                |                      |                                                                                                                | D16                     | 1                   | .85                     | 1<br>      | 10.6                       | 1            |                          | 1                                       |
| Channel Materials | % Sand                                                                                                            | 24.1<br>63.3                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      |                                                                                                                | D35                     | 1                   | 1.89                    |            | 5.77                       |              |                          | lmm                                     |
| nel N             | % Gravel                                                                                                          |                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |                      |                                                                                                                | D50                     |                     | 6.49                    | -          | 2.35                       | <u> </u><br> |                          | mm                                      |
| Chan              | % Cobble                                                                                                          | 5.8                         | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8                     | *****                                          |                      |                                                                                                                | D84                     |                     |                         | 1          | 71.17                      | 1            |                          | mm                                      |
| 2                 | % Boulder                                                                                                         | 0                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       |                                                |                      |                                                                                                                | D95                     | 1<br>               | 2.63                    |            |                            | 1            |                          | mm                                      |
|                   | % Bedrock                                                                                                         | 0                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       | nan ziri                                       |                      | i de la compaña de la comp | D100                    | <u> </u>            | 9.99                    | 1          | 180                        |              |                          | mm                                      |

a. The range of "feature" mid-point maximum bankfull depths, including the minimum, maximum and average values.

(Pool depths are obtained from the deepest portion of the feature.)

b. A composite sample of materials from riffle and pool featutes taken within the designated reach.

c. Sample obtained within the "active" bed of a riffle feature at the location of the cross section.

# Silver Creek and Unnamed Tributary As-Built Pattern Analyses

| Rc-UT  | Lm-UT  | Rc-MS  | Lm-MS  |           |
|--------|--------|--------|--------|-----------|
| 87.5   | 76.09  | 73.6   | 116.65 | Auc       |
| 36.55  | 71.8   | 55.8   | 124.76 |           |
| 41.85  | 58.82  | 90.4   | 124.86 |           |
| 49.41  | 106.29 | 47.97  | 191.73 |           |
| 10.91  | 73.72  | 108.89 | 166.76 |           |
| 65.86  |        | 145.22 | 73.49  |           |
| 53.67  |        | 181.06 | 147.42 | Wfpa - UT |
| 21.83  |        | 48.53  | 143.22 | 13.28     |
| 21.83  |        | 185.4  | 123.29 | 12.62     |
| 21.83  |        | 46.07  | 75.46  | 10.8      |
| 9.32   |        | 79.88  | 154.49 | 14.57     |
| 99.93  |        | 51.79  |        |           |
| 17.27  |        | 47.33  |        |           |
| 124.87 |        | 69.19  |        |           |
| 23.59  |        | 68.21  |        |           |
| 19.4   |        | 143.26 |        |           |
| 9.93   |        | 82.06  |        |           |
| 14.88  |        | 60.67  |        |           |
| 26.31  |        | 64.36  |        |           |
| 12.53  |        | 60.39  |        |           |
| 34.52  |        |        |        |           |
|        |        |        |        |           |

| 2   |  |
|-----|--|
| 200 |  |
| 2   |  |
| st  |  |
| gu  |  |
| Au  |  |

| /fpa - UT | Wfpa - MS |
|-----------|-----------|
| 13.28     | 82.81     |
| 12.62     | 84.45     |
| 10.8      | 181.94    |
| 14.57     | 114.45    |
|           | 106.92    |
|           | 112.66    |

| SL-UT  | VL-UT   | SL - MS | VL - MS |
|--------|---------|---------|---------|
| 542.01 | 1426.11 | 2905.24 | 2076.51 |

K - UT = 1.08

K - MS = 1.40

Tot Rest SL 4447.25

| Rc-U1          | T            | Lm-m1                  | T            | Rc-MS          | AS St        | SM-mJ                    | S             | Wfpa - UT                | T              | Wfpa - MS             | NS      |
|----------------|--------------|------------------------|--------------|----------------|--------------|--------------------------|---------------|--------------------------|----------------|-----------------------|---------|
|                |              |                        |              |                |              |                          |               |                          |                |                       |         |
| Mean           | 38.28 Mean   | Mean                   | 77.34 Mean   | Mean           | 85.50 Mean   | Mean                     | 131.10 Mean   | Mean                     | 12.82 Mean     | an                    | 113.87  |
| Standard Error | 6.98         | 6.98 Standard Error    | 7.83 Stand   | Standard Error | 9.85         | 9.85 Standard Error      | 10.73         | 10.73 Standard Error     | 0.78 Sta       | 0.78 Standard Error   | 14.74   |
| Median         | 23.59 Median | Median                 | 73.72 Media  | Median         | 68.70        | 68.70 Median             | 124.86 Median | Median                   | 12.95 Median   | edian                 | 109.79  |
| Mode           | 21.83 Mode   | Mode                   | #N/A         | Mode           | #N/A         | Mode                     | #N/A          | Mode                     | #N/A Mc        | Mode                  | #N/A    |
| Standard Devia | 31.97 5      | 31.97 Standard Devia   | 17.51 Stand  | Standard Devia | 44.03        | 44.03 Standard Deviation | 35.60         | 35.60 Standard Deviation | 1.57 Sta       | 1.57 Standard Deviati | 36.09   |
| Sample Variand | 1022.17 5    | 1022.17 Sample Variand | 306.61 Samp  | Sample Variand | 1938.68      | 938.68 Sample Variance   | 1267.16       | 1267.16 Sample Variance  | 2.46 Sa        | 2.46 Sample Variance  | 1302.78 |
| Kurtosis       | 1.69 k       | 1.69 Kurtosis          | 2.91 Kurtos  | Kurtosis       | 0.66         | 0.66 Kurtosis            | -0.04         | -0.04 Kurtosis           | 0.79 Kurtosis  | rtosis                | 3.30    |
| Skewness       | 1.52 5       | .52 Skewness           | 1.37 Skewi   | Skewness       | 1.34         | 1.34 Skewness            | -0.22         | -0.22 Skewness           | -0.47 Skewness | ewness                | 1.66    |
| Range          | 115.55 Range | Range                  | 47.47 Range  | Range          | 139.33 Range | Range                    | 118.24 Range  | Range                    | 3.77 Range     | nge                   | 99.13   |
| Ainimum        | 9.32 N       | 9.32 Minimum           | 58.82 Minim  | Minimum        | 46.07        | 46.07 Minimum            | 73.49         | 73.49 Minimum            | 10.80 Minimum  | nimum                 | 82.81   |
| Maximum        | 124.87 N     | 124.87 Maximum         | 106.29 Maxin | Maximum        | 185.40       | 185.40 Maximum           | 191.73        | 191.73 Maximum           | 14.57 Maximum  | iximum                | 181.94  |
| Sum            | 803.79 Sum   | Sum                    | 386.72 Sum   | Sum            | 1710.08 Sum  | Sum                      | 1442.13 Sum   | Sum                      | 51.27 Sum      | E                     | 683.23  |
| Count          | 21 C         | 21 Count               | 5 (          | Count          | 20           | 20 Count                 | 11 (          | 1 Count                  | 4 Count        | unt                   | G       |

Silver Creek Mainstem As-Built Monumented Cross-Sections Summary Reports

| XS1 - 2+35.30 - CV-1 - RIF - YR 0 SUMMARY.txt<br>RIVERMORPH CROSS SECTION SUMMARY                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                      |                                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| River Name: S<br>Reach Name: A<br>Cross Section Name: X<br>Survey Date: 0                                                                                                                                                                                                                            | s1 - 2+35.30 - C<br>6/22/07                                                                                                                        | V-1 - YR 0                                                                           |                                                                               |  |  |
| Cross Section Data En                                                                                                                                                                                                                                                                                |                                                                                                                                                    |                                                                                      |                                                                               |  |  |
| BM Elevation:<br>Backsight Rod Reading                                                                                                                                                                                                                                                               | 0 ft<br>: 0 ft                                                                                                                                     |                                                                                      |                                                                               |  |  |
| TAPE FS                                                                                                                                                                                                                                                                                              | ELEV                                                                                                                                               | NOT                                                                                  | E                                                                             |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                 | 1136.33<br>1133.94<br>1129.14<br>1127.06<br>1125.79<br>1125.74<br>1125.83<br>1126.65<br>1127.63<br>1128.86<br>1129.16<br>1130.78<br>1132<br>1132.1 | HT<br>BM<br>FP<br>BKF<br>LB<br>LEW<br>CV<br>REW<br>RB<br>FP<br>BKF<br>FP<br>BM<br>LT | 0.05<br>0.1<br>0.05                                                           |  |  |
| Cross Sectional Geome                                                                                                                                                                                                                                                                                | try                                                                                                                                                |                                                                                      |                                                                               |  |  |
| Floodprone Elevation<br>Bankfull Elevation (f<br>Floodprone Width (ft)<br>Bankfull Width (ft)<br>Entrenchment Ratio<br>Mean Depth (ft)<br>Maximum Depth (ft)<br>Width/Depth Ratio<br>Bankfull Area (sq ft)<br>Wetted Perimeter (ft)<br>Hydraulic Radius (ft)<br>Begin BKF Station<br>End BKF Station | 82.81<br>46.18<br>1.79<br>1.81<br>3.41<br>25.51<br>83.59<br>46.98<br>1.78<br>23.57<br>69.75                                                        | 15.45<br>2.26<br>3.41<br>6.84<br>34.99<br>19.41<br>1.8<br>23.57<br>39.02             | 30.73<br><br>1.58<br>3.4<br>19.45<br>48.59<br>34.36<br>1.41<br>39.02<br>69.75 |  |  |
| Entrainment Calculati                                                                                                                                                                                                                                                                                | ons                                                                                                                                                |                                                                                      |                                                                               |  |  |
| Entrainment Formula:                                                                                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                      |                                                                               |  |  |
| Slope<br>Shear Stress (lb/sq f<br>Movable Particle (mm)                                                                                                                                                                                                                                              | Channel<br>0.00265<br>t) 0.29                                                                                                                      |                                                                                      | Right Side<br>O                                                               |  |  |

|                                                                                                                                                                                                                    |                                                                                             | RPH CROSS SE                                                                                                                                         | ECTION SU                                                        |                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| River Name:<br>Reach Name:<br>Cross Section<br>Survey Date:                                                                                                                                                        | Silver<br>As-Bui<br>Name: XS2 - 2<br>06/22/0                                                | Creek & Tr <sup>-</sup><br>lt Mainstem<br>2+59.27 - Cv<br>07                                                                                         | ib Restor<br>/-1 - YR                                            | ation<br>O                                                                                 |
| Cross Section                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                      |                                                                  |                                                                                            |
| BM Elevation:<br>Backsight Rod                                                                                                                                                                                     | Reading:                                                                                    | 0 ft<br>0 ft                                                                                                                                         |                                                                  |                                                                                            |
| ТАРЕ                                                                                                                                                                                                               | FS                                                                                          | ELEV                                                                                                                                                 | N                                                                | OTE                                                                                        |
| 2.21<br>7.44<br>13.88<br>31.62<br>39.33<br>41.94<br>50.64<br>55.37<br>59.3<br>68.13<br>74.33<br>82.5<br>91.65<br>100.27                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1138.62<br>1136.53<br>1134.12<br>1128.54<br>1126.75<br>1125.61<br>1123.83<br>1125.39<br>1127.1<br>1127.95<br>1128.8<br>1129.92<br>1132.09<br>1131.95 | L<br>P<br>R<br>F<br>B<br>F<br>F                                  | W/HT<br>M<br>P<br>KF<br>B<br>EW 0.05<br>1.7<br>EW 0.05<br>B<br>P<br>SKF<br>P<br>SM<br>P/LT |
|                                                                                                                                                                                                                    |                                                                                             |                                                                                                                                                      |                                                                  |                                                                                            |
| Floodprone Ele<br>Bankfull Eleva<br>Floodprone Wid<br>Bankfull Width<br>Entrenchment M<br>Mean Depth (fi<br>Maximum Depth<br>Width/Depth Ra<br>Bankfull Area<br>Wetted Perime<br>Hydraulic Rad<br>Begin BKF Statio | Ratio<br>t)<br>(ft)<br>atio<br>(sq ft)<br>ter (ft)<br>ius (ft)<br>tion<br>on                | 2.12<br>4.84<br>19.9<br>89.53<br>43.51<br>2.06<br>31.21<br>73.38                                                                                     | 2.28<br>4.45<br>7.69<br>39.97<br>22.59<br>1.77<br>31.21<br>48.74 | 2.01<br>4.84<br>12.26<br>49.56<br>29.83<br>1.66<br>48.74<br>73.38                          |
| Entrainment Ca                                                                                                                                                                                                     | alculations                                                                                 |                                                                                                                                                      |                                                                  |                                                                                            |
| Entrainment Fo                                                                                                                                                                                                     | ormula: Rosge                                                                               | n Modified                                                                                                                                           | Shields C                                                        | Curve                                                                                      |
| Slope<br>Shear Stress<br>Movable Parti                                                                                                                                                                             | (lb/sq ft)<br>cle (mm)                                                                      | Channel<br>0.00265<br>0.34<br>68.9                                                                                                                   | Left Sic<br>O                                                    | le Right Side<br>O                                                                         |

|                                                                                                                                                                                                                                   |                                                                                                  | .27 - JH-4<br>RPH CROSS SE                                                                                                                                                                                        |                                                                            | R O SUMMARY.txt<br>MARY                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| River Name:<br>Reach Name:<br>Cross Section N<br>Survey Date:                                                                                                                                                                     | lame: XS3 - 2<br>06/22/0                                                                         | L1+99.27 - :<br>)7                                                                                                                                                                                                | JH-4 - YR                                                                  | tion<br>0                                                                                 |
| Cross Section D                                                                                                                                                                                                                   |                                                                                                  |                                                                                                                                                                                                                   |                                                                            |                                                                                           |
| BM Elevation:<br>Backsight Rod R                                                                                                                                                                                                  | Reading:                                                                                         | 0 ft<br>0 ft                                                                                                                                                                                                      |                                                                            |                                                                                           |
| ТАРЕ                                                                                                                                                                                                                              | FS                                                                                               | ELEV                                                                                                                                                                                                              | NO                                                                         | TE                                                                                        |
| 7.4<br>9.47<br>19.71<br>34.37<br>47.01<br>58.42<br>62.06<br>69.86<br>74.12<br>79.74<br>88.05<br>97.74<br>108.43<br>133                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | $\begin{array}{c} 1132.16\\ 1132.3\\ 1132.05\\ 1131.41\\ 1128.25\\ 1126.77\\ 1125.35\\ 1123.76\\ 1121.19\\ 1123.32\\ 1124.98\\ 1125.42\\ 1126.38\\ 1127.44\\ 1131.12\\ 1131.49\\ 1130.15\\ 1130.28\\ \end{array}$ | FP<br>BK<br>LB<br>LE<br>P<br>RE<br>RB<br>FP<br>BK<br>FP<br>BM<br>FP<br>BW  | F<br>2.2<br>W 0.05<br>F                                                                   |
| Cross Sectional                                                                                                                                                                                                                   | Geometrv                                                                                         |                                                                                                                                                                                                                   |                                                                            |                                                                                           |
| Floodprone Elev<br>Bankfull Elevat<br>Floodprone Widt<br>Bankfull Width<br>Entrenchment Ra<br>Mean Depth (ft)<br>Maximum Depth (<br>Width/Depth Rat<br>Bankfull Area (<br>Wetted Perimete<br>Hydraulic Radiu<br>Begin BKF Station | thon (ft)<br>th (ft)<br>(ft)<br>atio<br>(ft)<br>tio<br>(sq ft)<br>er (ft)<br>us (ft)<br>ion<br>1 | 1126.58<br>181.94<br>51.22<br>3.55<br>1.87<br>5.39<br>27.39<br>95.81<br>52.85<br>1.81<br>48.54<br>99.76                                                                                                           | 22.46<br><br>2.28<br>5.39<br>9.85<br>51.29<br>28.24<br>1.82<br>48.54<br>71 | 1120.38<br><br>28.76<br><br>1.55<br>4.82<br>18.55<br>44.52<br>34.25<br>1.3<br>71<br>99.76 |
| Entrainment Cal                                                                                                                                                                                                                   | lculations                                                                                       |                                                                                                                                                                                                                   |                                                                            |                                                                                           |
| Entrainment For                                                                                                                                                                                                                   | rmula: Rosge                                                                                     | n Modified                                                                                                                                                                                                        | shields Cu                                                                 | irve                                                                                      |
| Slope<br>Shear Stress (1<br>Movable Particl                                                                                                                                                                                       | lb/sq ft)<br>le (mm)                                                                             | Channel<br>0.00265<br>0.30<br>62.6                                                                                                                                                                                | Left Side<br>O                                                             | Right Side<br>O                                                                           |

XS3 - 11+99.27 - JH-4 - POOL - YR 0 SUMMARY.txt

| F                                                                                                                                                                                                                                                                                         | RIVERMOR                                | PH CROSS SE                                                                                              | ECTION S                                                           | UMMA                                                                   | SUMMARY.txt<br>RY                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|
| River Name:<br>Reach Name:<br>Cross Section Name:<br>Survey Date:                                                                                                                                                                                                                         | Silver<br>As-Buil<br>XS4 - 1<br>06/22/0 | Creek & Tr<br>t Mainstem<br>2+80.37 ~<br>7                                                               | ib Resto<br>RIF-2 -                                                | rati<br>YR                                                             | on<br>O                                                            |
| Cross Section Data I                                                                                                                                                                                                                                                                      |                                         |                                                                                                          |                                                                    |                                                                        |                                                                    |
| BM Elevation:<br>Backsight Rod Readin                                                                                                                                                                                                                                                     | ng:                                     | 0 ft<br>0 ft                                                                                             |                                                                    |                                                                        |                                                                    |
| TAPE FS                                                                                                                                                                                                                                                                                   |                                         | ELEV                                                                                                     |                                                                    | NOTE                                                                   |                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                      |                                         | 1129.851130.171129.921130.171127.51125.951124.361123.151123.151123.291124.891126.741128.471131.121130.95 |                                                                    | BM<br>LT<br>BW<br>FP<br>BKF<br>LB<br>REW<br>FP<br>FP<br>FP<br>BM<br>HT | 0.05                                                               |
| Cross Sectional Geo                                                                                                                                                                                                                                                                       | metrv                                   |                                                                                                          |                                                                    |                                                                        |                                                                    |
| Floodprone Elevation<br>Bankfull Elevation<br>Floodprone Width (f<br>Bankfull Width (ft)<br>Entrenchment Ratio<br>Mean Depth (ft)<br>Maximum Depth (ft)<br>Width/Depth Ratio<br>Bankfull Area (sq f<br>Wetted Perimeter (f<br>Hydraulic Radius (f<br>Begin BKF Station<br>End BKF Station | t)<br>t)<br>t)                          | 1.64<br>1.48<br>2.8<br>47.17<br>103.55<br>70.2<br>1.48<br>58.03<br>127.84                                | 1.27<br>2.74<br>34.02<br>54.67<br>46.09<br>1.19<br>58.03<br>101.23 |                                                                        | 1.84<br>2.8<br>14.46<br>48.88<br>29.58<br>1.65<br>101.23<br>127.84 |
|                                                                                                                                                                                                                                                                                           |                                         |                                                                                                          |                                                                    |                                                                        |                                                                    |
| Entrainment Formula                                                                                                                                                                                                                                                                       | : Rosger                                | n Modified                                                                                               | Shields                                                            | Curv                                                                   | ve                                                                 |
| Slope<br>Shear Stress (lb/sq<br>Movable Particle (m                                                                                                                                                                                                                                       |                                         | Channel<br>0.00265<br>0.24<br>54.0                                                                       | Left Si<br>O                                                       | de                                                                     | Right Side<br>O                                                    |

|                                                                                              | .66 - JH-8 -<br>RPH CROSS S                                                                                          |                                                                                           | YR O SUMMARY.txt<br>IARY                                                        |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| River Name: Silver<br>Reach Name: As-Bui<br>Cross Section Name: XS5 -<br>Survey Date: 06/22/ | 27+44.66 -<br>07                                                                                                     | JH-8 - YR (                                                                               | nion<br>)                                                                       |
| Cross Section Data Entry                                                                     |                                                                                                                      |                                                                                           |                                                                                 |
| BM Elevation:<br>Backsight Rod Reading:                                                      | 0 ft<br>0 ft                                                                                                         |                                                                                           |                                                                                 |
| TAPE FS                                                                                      | ELEV                                                                                                                 | NO7                                                                                       | E                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                         | 1127.06<br>1127.02<br>1124.57<br>1121.11<br>1120.42<br>1119.54<br>1118.43<br>1119.96<br>1119.69<br>1120.7<br>1121.79 | BM<br>LT<br>BW<br>FP<br>LB<br>LEV<br>TW<br>JH<br>REV<br>RB<br>RB<br>BKI<br>BW<br>BM<br>LT | v 0.05<br>L.3<br>v 0.05                                                         |
| Cross Sectional Geometry                                                                     |                                                                                                                      |                                                                                           |                                                                                 |
| Width/Depth Ratio<br>Bankfull Area (sq ft)<br>Wetted Perimeter (ft)                          | 1122.18<br>106.92<br>67.28<br>1.59<br>1.29<br>3.75<br>52.16<br>86.55<br>68.34<br>1.27<br>50.88                       | 31.49<br><br>1.56<br>3.75<br>20.19<br>49.15<br>35.24                                      | 1122.18<br>35.79<br><br>1.05<br>3.17<br>34.09<br>37.4<br>39.44<br>0.95<br>82.37 |
| Entrainment Calculations                                                                     |                                                                                                                      |                                                                                           |                                                                                 |
| Entrainment Formula: Rosge                                                                   | en Modified                                                                                                          | shields Cu                                                                                | rve                                                                             |
| Slope<br>Shear Stress (lb/sq ft)<br>Movable Particle (mm)                                    | Channel<br>0.00265<br>0.21<br>48.2                                                                                   | Left Side<br>O                                                                            | Right Side<br>O                                                                 |

Page 2

| XS6 - 27+65.26 - JH-8 - POOL - YR O SUMMARY.txt<br>RIVERMORPH CROSS SECTION SUMMARY                                                                                                                                                                                                                        |                                                  |                                                                                                                                                       |                                                                                                      |                                                          |                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| River Name:<br>Reach Name:<br>Cross Section Name:<br>Survey Date:                                                                                                                                                                                                                                          | Silver<br>As-Buil<br>XS6 - 2<br>06/22/0          | Creek & Tr<br>It Mainstem<br>27+65.26 JH<br>)7                                                                                                        | ib Resto<br>-8 - YR                                                                                  | orati<br>0                                               |                                                                                                                 |  |
| Cross Section Data                                                                                                                                                                                                                                                                                         |                                                  |                                                                                                                                                       |                                                                                                      |                                                          |                                                                                                                 |  |
| BM Elevation:<br>Backsight Rod Readi                                                                                                                                                                                                                                                                       | ing:                                             | 0 ft<br>0 ft                                                                                                                                          |                                                                                                      |                                                          |                                                                                                                 |  |
| TAPE FS                                                                                                                                                                                                                                                                                                    |                                                  | ELEV                                                                                                                                                  |                                                                                                      | NOTE                                                     |                                                                                                                 |  |
| 0       0         11.59       0         22.38       0         23.03       0         49.36       0         66.42       0         74.17       0         75.22       0         83.58       0         98.92       0         105.3       0         139.71       0         142.29       0         144.41       0 |                                                  | 1126.4<br>1126.96<br>1126.84<br>1122.16<br>1120.92<br>1120.96<br>1119.13<br>1118.29<br>1119.21<br>1120.61<br>1121.32<br>1121.99<br>1125.86<br>1126.62 |                                                                                                      | BM<br>HW<br>BF<br>LE<br>RB<br>FP<br>BM<br>LT<br>BM<br>LT | 0.05                                                                                                            |  |
| Cross Sectional Geo                                                                                                                                                                                                                                                                                        | ometrv                                           |                                                                                                                                                       |                                                                                                      |                                                          |                                                                                                                 |  |
| Floodprone Elevation<br>Bankfull Elevation<br>Floodprone Width (†<br>Bankfull Width (†<br>Entrenchment Ratio<br>Mean Depth (ft)<br>Maximum Depth (ft)<br>Width/Depth Ratio<br>Bankfull Area (sq<br>Wetted Perimeter (†<br>Hydraulic Radius (†<br>Begin BKF Station<br>End BKF Station                      | on (ft)<br>(ft)<br>ft)<br>)<br>ft)<br>ft)<br>ft) | Channel<br>1126.03<br>1122.16<br>112.66<br>74.69<br>1.51<br>1.43<br>3.87<br>52.23<br>107.1<br>76.1<br>1.41<br>49.36<br>124.05                         | Left<br>1126.01<br>1122.10<br>38<br>1.69<br>3.87<br>22.49<br>64.1<br>42.25<br>1.52<br>49.36<br>87.36 | 3<br>6                                                   | Right<br>1126.03<br>1122.16<br><br>36.69<br><br>1.17<br>3.01<br>31.36<br>43<br>39.87<br>1.08<br>87.36<br>124.05 |  |
|                                                                                                                                                                                                                                                                                                            |                                                  |                                                                                                                                                       |                                                                                                      |                                                          |                                                                                                                 |  |
| Entrainment Formula                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                       |                                                                                                      |                                                          |                                                                                                                 |  |
| Slope<br>Shear Stress (lb/so<br>Movable Particle (n                                                                                                                                                                                                                                                        | q ft)<br>mm)                                     | 0.00265                                                                                                                                               | Left S<br>O                                                                                          | ide                                                      | Right Side<br>O                                                                                                 |  |

# Silver Creek Unnamed Tributary A As-Built Monumented Cross-Sections Summary Reports

## XS-1 - UT-A - RIFFLE - YR 0.txt RIVERMORPH CROSS SECTION SUMMARY

| Cross Sec                                                                                                                                                          | River Name: Silver Creek & Trib Restoration<br>Reach Name: As-Built UT<br>Cross Section Name: XS-1 - UT-1 - Riffle - YR 0<br>Survey Date: 07/09/07                       |                                                                                                                         |                                                                                                              |                                                                                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cross Sec                                                                                                                                                          | tion Data Entry                                                                                                                                                          |                                                                                                                         |                                                                                                              |                                                                                                                   |  |  |  |
| BM Elevat<br>Backsight                                                                                                                                             | ion:<br>Rod Reading:                                                                                                                                                     | 0 ft<br>0 ft                                                                                                            |                                                                                                              |                                                                                                                   |  |  |  |
| ТАРЕ                                                                                                                                                               | FS                                                                                                                                                                       | ELEV                                                                                                                    | NC                                                                                                           | DTE                                                                                                               |  |  |  |
| 0<br>7.6<br>10.3<br>18.76<br>19.01<br>19.36<br>22.9<br>32.51<br>35.03<br>42.15<br>53.04                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                           | 1190.12<br>1189.19<br>1186.02<br>1186.01<br>1186.08<br>1187.02<br>1189.59<br>1190.25<br>1190.96<br>1195.28              | FF<br>BL<br>LE<br>R<br>R<br>R<br>BM<br>RE<br>BM<br>FF                                                        | 4<br>3<br>5<br>0.1<br>5<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |  |  |  |
|                                                                                                                                                                    | tional Geometry                                                                                                                                                          |                                                                                                                         |                                                                                                              |                                                                                                                   |  |  |  |
| Floodpron<br>Bankfull<br>Floodpron<br>Bankfull<br>Entrenchm<br>Mean Dept<br>Maximum D<br>Width/Dep<br>Bankfull<br>Wetted Pe<br>Hydraulic<br>Begin BKF<br>End BKF S | e Elevation (ft)<br>Elevation (ft)<br>Width (ft)<br>Width (ft)<br>ent Ratio<br>h (ft)<br>epth (ft)<br>th Ratio<br>Area (sq ft)<br>rimeter (ft)<br>Radius (ft)<br>Station | Channel<br>1188.03<br>1187.02<br>13.28<br>6.81<br>1.95<br>0.53<br>1.01<br>12.85<br>3.59<br>7.12<br>0.5<br>16.09<br>22.9 | Left<br>1188.03<br>1187.02<br><br>4.65<br><br>0.64<br>1.01<br>7.27<br>2.97<br>5.46<br>0.54<br>16.09<br>20.74 | Right<br>1188.03<br>1187.02<br><br>2.16<br><br>0.29<br>0.57<br>7.45<br>0.62<br>2.81<br>0.22<br>20.74<br>22.9      |  |  |  |
| Entrainme                                                                                                                                                          | ent Calculations                                                                                                                                                         |                                                                                                                         |                                                                                                              |                                                                                                                   |  |  |  |
| Entrainme                                                                                                                                                          | nt Formula: Rosge                                                                                                                                                        | n Modified                                                                                                              | Shields Cu                                                                                                   | urve                                                                                                              |  |  |  |
|                                                                                                                                                                    | ess (lb/sq ft)<br>article (mm)                                                                                                                                           | Channel<br>0.04338<br>1.35<br>189.9                                                                                     | Left Side<br>O                                                                                               | e Right Side<br>O                                                                                                 |  |  |  |

## XS-2 - UT-A - POOL - YR 0.txt RIVERMORPH CROSS SECTION SUMMARY

River Name: Silver Creek & Trib Restoration Reach Name: As-Built UT Cross Section Name: XS-2 - UT-1 - Pool - YR 0 Survey Date: 06/22/07 Cross Section Data Entry BM Elevation: 0 ft 0 ft Backsight Rod Reading: NOTE TAPE FS ELEV \_\_\_\_\_\_ 1174.93 FP 0 0 1173.89 1172.12 5.12 0 BΜ 11.19 0 FP 0 1171.1314.41 BKF Ŏ 0 1170.68 15.92 LEW 1169.76 Р 1.0 19.95 Ó 1170.76 REW 23.27 1173.96 1174.1 1177.75 0 28.77 FP 0 BΜ 30.38 FΡ 36.28 0 \_\_\_\_\_\_\_\_\_\_\_ Cross Sectional Geometry Left 1172.5 Right 1172.5 Channel Floodprone Elevation (ft)1172.5Bankfull Elevation (ft)1171.13Floodprone Width (ft)16.37Bankfull Width (ft)9.5Entrenchment Ratio1.72Mean Depth (ft)0.74Maximum Donth (ft)1.37 1171.13 1171.13 \_\_\_\_\_ \_ \_ \_ \_ \_ 3.2 6.3 ----0.45 0.89 Maximum Depth (ft) 1.37 0.84 1.37 7.11 width/Depth Ratio 12.84 7.08 7.01 9.91 0.71 1.43 5.59 Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station 4.14 0.34 0.75 14.41 17.61 14.41 23,91 17.61 23,91 \_\_\_\_\_ \_\_\_\_\_ Entrainment Calculations Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side 0.04191 0 0 slope Shear Stress (lb/sq ft) 1.86 Movable Particle (mm) 239.6

## XS-3 - UT-A - POOL - YR 0.txt RIVERMORPH CROSS SECTION SUMMARY

\_\_\_\_\_ River Name: Silver Creek & Trib Restoration Reach Name: As-Built UT Cross Section Name: XS-3 - UT-1 - Pool - YR 0 Survey Date: 06/22/07 \_\_\_\_\_ Cross Section Data Entry 0 ft 0 ft BM Elevation: Backsight Rod Reading: FS ELEV NOTE TAPE \_\_\_\_\_\_ \_\_\_\_\_ 1157.24 FP 1156.07 BM 1154.56 FP 0 0 7.87 0 17.57 20.25 0 ŏ 1152.28 FP 0 0 0 1150.6 23.68 BKF 1150.11 24.69 LEW 1148.96 Р 1.1 27.52 0 1150.13 REW 30.84 1152.2 1154.02 1155.52 0 34.76 FΡ 39.74 FP 0 47.06 0 BΜ 1156 FΡ 0 53.26 \_\_\_\_\_\_\_ Cross Sectional Geometry \_\_\_\_\_\_ Left 1152.24 Right Channel Floodprone Elevation (ft) 1152.24 Bankfull Elevation (ft) 1150.6 Floodprone Width (ft) 14.54 Bankfull Width (ft) 8.05 1152.-1150.6 1152.24 1150.6 5.79 2.26 Entrenchment Ratio Mean Depth (ft) 1.81 \_\_\_\_ ----1 0.87 0.52 1.64 5.79 Maximum Depth (ft) 1.64 0.95 9.25 6.97 8.7 0.8 Width/Depth Ratio 4.35 5.79 7.2 0.8 Bankfull Area (sq ft) 1.18 Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station 3.41 0.35 23.68 31.73 23.68 29.47 29.47 31.73 End BKF Station \_\_\_\_\_\_\_ Entrainment Calculations \_\_\_\_\_\_\_\_\_\_\_ Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side 0 0 0.04 slope Shear Stress (lb/sq ft) 2.00 Movable Particle (mm) 252.8

## XS-4 - UT-A - RIFFLE - YR 0.txt RIVERMORPH CROSS SECTION SUMMARY

| River Name:<br>Reach Name:<br>Cross Section Na<br>Survey Date:                                                                                                                                                                                                   | me: XS-4 -<br>06/22/                                                                                                            | UT-1 - Rif<br>07                                                                                                         | fle - YR                                                                                                     | 0                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Cross Section Da                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                          |                                                                                                              |                                                                                                             |
| BM Elevation:<br>Backsight Rod Re                                                                                                                                                                                                                                | ading:                                                                                                                          | 0 ft<br>0 ft                                                                                                             |                                                                                                              |                                                                                                             |
| TAPE F                                                                                                                                                                                                                                                           | S                                                                                                                               | ELEV                                                                                                                     | N                                                                                                            | OTE                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                             | )<br>)<br>)<br>)<br>)                                                                                                           | 1154.42<br>1151.52<br>1150.93<br>1150.15<br>1150.12<br>1150.15<br>1152.34<br>1154.48<br>1155<br>1155.43                  | B F<br>B L<br>R<br>R<br>F<br>B F                                                                             | P<br>M<br>P<br>SKF<br>EW 0.05<br>C 0.05<br>EW 0.05<br>EW 0.05<br>F<br>P<br>SM<br>P                          |
| Cross Sectional                                                                                                                                                                                                                                                  | Geometrv                                                                                                                        |                                                                                                                          |                                                                                                              |                                                                                                             |
| Floodprone Eleva<br>Bankfull Elevati<br>Floodprone Width<br>Bankfull Width (<br>Entrenchment Rat<br>Mean Depth (ft)<br>Maximum Depth (ft)<br>Width/Depth Rati<br>Bankfull Area (s<br>Wetted Perimeter<br>Hydraulic Radius<br>Begin BKF Statio<br>End BKF Station | tion (ft)<br>on (ft)<br>(ft)<br>ft)<br>cio<br>ft)<br>o<br>ft)<br>o<br>ft)<br>o<br>ft)<br>ft)<br>ft)<br>ft)<br>ft)<br>ft)<br>ft) | Channel<br>1151.74<br>1150.93<br>14.57<br>8.11<br>1.8<br>0.43<br>0.81<br>18.86<br>3.51<br>8.28<br>0.42<br>23.24<br>31.35 | Left<br>1151.74<br>1150.93<br><br>5.26<br><br>0.45<br>0.81<br>11.69<br>2.36<br>6.12<br>0.39<br>23.24<br>28.5 | Right<br>1151.74<br>1150.93<br><br>2.85<br><br>0.4<br>0.79<br>7.13<br>1.15<br>3.74<br>0.31<br>28.5<br>31.35 |
| Entrainment Calc                                                                                                                                                                                                                                                 | ulations                                                                                                                        |                                                                                                                          |                                                                                                              | ·····                                                                                                       |
| Entrainment Form                                                                                                                                                                                                                                                 | ula: Rosge                                                                                                                      | n Modified                                                                                                               | Shields C                                                                                                    | turve                                                                                                       |
| Slope<br>Shear Stress (lb<br>Movable Particle                                                                                                                                                                                                                    | o/sq ft)<br>e (mm)                                                                                                              | Channel<br>0.04<br>1.05<br>157.4                                                                                         | Left Sid<br>O                                                                                                | le Right Side<br>O                                                                                          |

Silver Creek Mainstem Impaired Reach Cross-Sections Summary Reports

| Riffle 12+52.5 Abandoned Oxbow.txt<br>RIVERMORPH CROSS SECTION SUMMARY                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                                            |                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|--|--|
| River Name: Silve<br>Reach Name: Reach<br>Cross Section Name: Riffl<br>Survey Date: 02/17                                                                                                                                                                                                                   | e Section 12                                                                                                          | ib Restorat<br>d Oxbow - A<br>+52.5                                                                        | ion<br>ltered) |  |  |
| Cross Section Data Entry                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                            |                |  |  |
| BM Elevation:<br>Backsight Rod Reading:                                                                                                                                                                                                                                                                     | 1133.84<br>0.16 ft                                                                                                    | ft                                                                                                         |                |  |  |
| TAPE FS                                                                                                                                                                                                                                                                                                     | ELEV                                                                                                                  | NOT                                                                                                        | E              |  |  |
| 84       5.47         69.5       5.37         61       5.44         60.6       9.45         58.3       11.14         57.4       11.8         57.4       12.69         54.8       13.01         51.8       12.85         49.4       11.85         46.5       11.57                                           | 1128.53<br>1128.63<br>1128.56<br>1124.55<br>1122.86<br>1122.2<br>1121.31<br>1120.99<br>1121.15<br>1122.15<br>1122.43  | FP<br>REW                                                                                                  |                |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                        | 1122.43 1122.14 1122.35 1122.65 1123.12 1123.87 1125.1 1126.19 1126.52 1127.69 1128.61 1129.3 1128.74                 | LEW<br>BKF<br>LB                                                                                           |                |  |  |
| Cross Sectional Geometry                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                            |                |  |  |
| Floodprone Elevation (ft)<br>Bankfull Elevation (ft)<br>Floodprone Width (ft)<br>Bankfull Width (ft)<br>Entrenchment Ratio<br>Mean Depth (ft)<br>Maximum Depth (ft)<br>Width/Depth Ratio<br>Bankfull Area (sq ft)<br>Wetted Perimeter (ft)<br>Hydraulic Radius (ft)<br>Begin BKF Station<br>End BKF Station | Channel<br>1136.23<br>1128.61<br>84<br>122.47<br>0.69<br>1.88<br>7.62<br>65.14<br>230.44<br>152.95<br>1.51<br>0<br>17 | Left<br>1136.23<br>1128.61<br><br>77.89<br><br>1.85<br>7.62<br>42.1<br>227.03<br>140.69<br>1.61<br>0<br>17 | Right          |  |  |
| Entrainment Calculations                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                            |                |  |  |

Riffle 12+52.5 Abandoned Oxbow.txt Entrainment Formula: Rosgen Modified Shields Curve

| Slope<br>Shear Stress (lb/sq ft)<br>Movable Particle (mm) | Channel<br>0.00218<br>0.21<br>47.5 | Left Side<br>O | Right Side<br>O |
|-----------------------------------------------------------|------------------------------------|----------------|-----------------|
| Movable Particle (mm)                                     | 47.5                               |                |                 |

| Riffle 18+31 Over-Tightened Meander.txt<br>RIVERMORPH CROSS SECTION SUMMARY                                                                                                 |                                                                                                                          |                                                                                                                      |             |                                                      |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|--------|
| River Name: Silver Creek & Trib Restoration<br>Reach Name: Reach 3 (Over Tightened Meander)<br>Cross Section Name: Riffle Section 18+31<br>Survey Date: 02/09/06            |                                                                                                                          |                                                                                                                      |             |                                                      |        |
| Cross Section                                                                                                                                                               | Data Entry                                                                                                               |                                                                                                                      |             |                                                      |        |
| BM Elevation:<br>Backsight Rod                                                                                                                                              | Reading:                                                                                                                 | 1132.97<br>2.12 ft                                                                                                   | ft          |                                                      |        |
| TAPE                                                                                                                                                                        | FS                                                                                                                       | ELEV                                                                                                                 |             | NOTE                                                 |        |
| 59<br>51<br>47.5<br>43<br>38<br>37.8<br>34.2<br>30.5<br>27<br>23.6<br>22.9<br>21<br>15.2<br>9<br>0                                                                          | 4.85<br>4.7<br>4.91<br>5.92<br>11.05<br>11.23<br>11.83<br>11.6<br>11.39<br>11.13<br>10.84<br>9.6<br>3.42<br>3.44<br>3.91 | 1130.18<br>1129.17<br>1124.04<br>1123.86<br>1123.26<br>1123.7<br>1123.96<br>1124.25<br>1125.49<br>1131.67<br>1131.18 |             | BKF<br>RB<br>TW<br>SB<br>SB<br>LEW<br>LB<br>FP<br>FP |        |
| Cross Sectional Geometry                                                                                                                                                    |                                                                                                                          |                                                                                                                      |             |                                                      |        |
| Floodprone El<br>Bankfull Eleva<br>Floodprone Wig<br>Bankfull Widtl<br>Entrenchment Mean Depth (f<br>Maximum Depth Ra<br>Watted Perime<br>Hydraulic Rad<br>Begin BKF Statig | ation (ft)<br>dth (ft)<br>Ratio<br>t)<br>(ft)<br>atio<br>(sq ft)<br>ter (ft)<br>ius (ft)<br>tion                         | 1130.18 59 30.9 1.91 4.52 6.92 6.84 139.7 35.78 3.9 47.5 16.6                                                        |             | Right                                                | -      |
| Entrainment Calculations                                                                                                                                                    |                                                                                                                          |                                                                                                                      |             |                                                      |        |
| Entrainment Formula: Rosgen Modified Shields Curve                                                                                                                          |                                                                                                                          |                                                                                                                      |             |                                                      |        |
| Slope<br>Shear Stress<br>Movable Parti                                                                                                                                      | (lb/sq ft)<br>cle (mm)                                                                                                   | Channel<br>0.00218<br>0.53<br>95.4                                                                                   | Left S<br>O | ide Righ <sup>.</sup><br>O                           | : Side |

## Riffle 29+73 Top of MS Reach.txt RIVERMORPH CROSS SECTION SUMMARY

| River Name: Silver Creek & Trib Restoration<br>Reach Name: Reach 4 (Top of Main Stem)<br>Cross Section Name: Riffle Section 29+73<br>Survey Date: 02/09/06                                                                           |                                                                                                                                                    |                                                                                                                                                                                             |              |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------|
| Cross Section                                                                                                                                                                                                                        | Data Entry                                                                                                                                         |                                                                                                                                                                                             |              |                                     |
| BM Elevation:<br>Backsight Rod                                                                                                                                                                                                       | Reading:                                                                                                                                           | 1134.51<br>3.04 ft                                                                                                                                                                          |              |                                     |
| ТАРЕ                                                                                                                                                                                                                                 | FS                                                                                                                                                 | ELEV                                                                                                                                                                                        |              | NOTE                                |
| 37<br>33<br>30.6<br>27.3<br>27.3<br>22.6<br>18.3<br>15.4<br>13.1<br>10.1<br>7.3<br>5<br>5<br>3<br>1<br>0                                                                                                                             | $\begin{array}{c} 3.41\\ 3.7\\ 4.72\\ 10.71\\ 10.81\\ 11.21\\ 11.28\\ 11.01\\ 10.85\\ 11.29\\ 11.26\\ 11.01\\ 10.7\\ 5.1\\ 4.63\\ 4.4 \end{array}$ | $\begin{array}{c} 1134.14\\ 1133.85\\ 1132.83\\ 1126.84\\ 1126.74\\ 1126.27\\ 1126.54\\ 1126.27\\ 1126.29\\ 1126.29\\ 1126.54\\ 1126.54\\ 1126.85\\ 1132.45\\ 1132.92\\ 1133.15\end{array}$ |              | RB<br>BKF<br>REW<br>TW<br>LEW<br>LB |
| Cross Sectional Geometry                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                                             |              |                                     |
| Floodprone Ele<br>Bankfull Eleva<br>Floodprone Wid<br>Bankfull Width<br>Entrenchment R<br>Mean Depth (ft<br>Maximum Depth<br>Width/Depth Ra<br>Bankfull Area<br>Wetted Perimet<br>Hydraulic Radi<br>Begin BKF Stat<br>End BKF Statio | (TT)<br>(atio<br>(ft)<br>(ft)<br>(sq ft)<br>er (ft)<br>us (ft)<br>ion<br>on<br>                                                                    | 29.22<br>1.27<br>5.45<br>6.57<br>5.36<br>159.25<br>37.24<br>4.28<br>30.6<br>1.38                                                                                                            |              |                                     |
|                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                                             |              |                                     |
| Entrainment Formula: Rosgen Modified Shields Curve                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                                                                                                             |              |                                     |
| Slope<br>Shear Stress (<br>Movable Partic                                                                                                                                                                                            | (lb/sq ft)<br>le (mm)                                                                                                                              | Channel<br>0.0027<br>0.72<br>119.5                                                                                                                                                          | Left Si<br>O | de Right Side<br>O                  |

Silver Creek Unnamed Tributary A Impaired Reach Cross-Section Summary Report

| River Name: Silver Creek & Trib Restoration<br>Reach Name: Reach 5 (Unnamed Tributary)<br>Cross Section Name: Riffle Section 1+15<br>Survey Date: 01/14/06 |                                                                                                                                                                                                                                                                             |                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Cross Section Data Entry                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                  |  |  |
| BM Elevation:<br>Backsight Rod Reading:                                                                                                                    | 1141.75<br>11.46 ft                                                                                                                                                                                                                                                         | ft                                                                                               |  |  |
| TAPE FS                                                                                                                                                    | ELEV                                                                                                                                                                                                                                                                        | NOTE                                                                                             |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                       | $\begin{array}{c} 1145.01\\ 1144.57\\ 1144.39\\ 1144.21\\ 1144.19\\ 1143.85\\ 1143.46\\ 1143.29\\ 1143.46\\ 1143.99\\ 1144.67\\ 1144.67\\ 1144.76\\ 1144.67\\ 1144.56\\ 1144.56\\ 1144.56\\ 1144.56\\ 1144.56\\ 1144.56\\ 1145.55\\ 1146.14\\ 1146.56\\ 1148.66\end{array}$ | Bench Mark = 1141.75 from 4D Si<br>BKF<br>LEW<br>TW<br>REW<br>RB<br>Center FP High Water Channel |  |  |
| Cross Sectional Geometry                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                  |  |  |
| Wetted Perimeter (ft)                                                                                                                                      | 1144.19<br>68.53<br>13.72<br>5<br>0.26<br>0.9<br>52.77<br>3.54<br>13.97                                                                                                                                                                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             |  |  |
| Entrainment Calculations                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                  |  |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                             |                                                                                                  |  |  |

Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Shear Stress (lb/sq ft) 0.55 Movable Particle (mm) 97.4